{"title":"Gate Oxide and Package Reliability of TO-263 SiC MOSFETs","authors":"Rahman Sajadi;C. N. Muhammed Ajmal;Bilal Akin","doi":"10.1109/TCPMT.2025.3589429","DOIUrl":null,"url":null,"abstract":"This article presents a comprehensive reliability analysis of TO-263 silicon carbide MOSFETs (SiC MOSFETs) from four different vendors, focusing on gate oxide and package degradation. A range of accelerated aging tests (AATs), including positive high-temperature gate bias (PHTGB), negative high-temperature gate bias (NHTGB), high-temperature reverse bias (HTRB), and dc power cycling (DCPC), are conducted to investigate both gate oxide and package reliability. The findings from HTGB and HTRB tests emphasize that even a 10 nm reduction in gate oxide thickness can significantly impact gate oxide reliability compared to similar designs. Furthermore, the results from NHTGB show that the devices are more prone to failure compared to PHTGB, disproving the idea that the device lifetime is longer in the off-state compared to the on-state. The conclusions are drawn from measurements using focused ion beam (FIB) and transmission electron microscopy (TEM), which provide detailed cross-sectional images of the devices. Additionally, the reliability of the TO-263 package is assessed, highlighting solder fatigue failure between the device and the printed circuit board (PCB) as a significant issue. This failure mechanism can lead to the detachment of the device from the PCB, resulting in a loss of connection. The study underscores the importance of optimizing gate oxide thickness and addressing thermal–mechanical stresses to enhance the overall reliability of SiC MOSFETs with TO-263 packages in high-power applications.","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 8","pages":"1732-1740"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Components, Packaging and Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11080400/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a comprehensive reliability analysis of TO-263 silicon carbide MOSFETs (SiC MOSFETs) from four different vendors, focusing on gate oxide and package degradation. A range of accelerated aging tests (AATs), including positive high-temperature gate bias (PHTGB), negative high-temperature gate bias (NHTGB), high-temperature reverse bias (HTRB), and dc power cycling (DCPC), are conducted to investigate both gate oxide and package reliability. The findings from HTGB and HTRB tests emphasize that even a 10 nm reduction in gate oxide thickness can significantly impact gate oxide reliability compared to similar designs. Furthermore, the results from NHTGB show that the devices are more prone to failure compared to PHTGB, disproving the idea that the device lifetime is longer in the off-state compared to the on-state. The conclusions are drawn from measurements using focused ion beam (FIB) and transmission electron microscopy (TEM), which provide detailed cross-sectional images of the devices. Additionally, the reliability of the TO-263 package is assessed, highlighting solder fatigue failure between the device and the printed circuit board (PCB) as a significant issue. This failure mechanism can lead to the detachment of the device from the PCB, resulting in a loss of connection. The study underscores the importance of optimizing gate oxide thickness and addressing thermal–mechanical stresses to enhance the overall reliability of SiC MOSFETs with TO-263 packages in high-power applications.
期刊介绍:
IEEE Transactions on Components, Packaging, and Manufacturing Technology publishes research and application articles on modeling, design, building blocks, technical infrastructure, and analysis underpinning electronic, photonic and MEMS packaging, in addition to new developments in passive components, electrical contacts and connectors, thermal management, and device reliability; as well as the manufacture of electronics parts and assemblies, with broad coverage of design, factory modeling, assembly methods, quality, product robustness, and design-for-environment.