Weisan Fang , Xiaoniu Tu , Huajie Luo , He Qi , Hua Tan , Haibo Zhang , Jun Chen
{"title":"Ultra-high temperature piezoelectric crystals: Properties, structures and applications","authors":"Weisan Fang , Xiaoniu Tu , Huajie Luo , He Qi , Hua Tan , Haibo Zhang , Jun Chen","doi":"10.1016/j.pmatsci.2025.101556","DOIUrl":null,"url":null,"abstract":"<div><div>Piezoelectric single crystals with high melting points are crucial for ultra-high temperature sensing applications, such as structural health monitoring and non-destructive testing of special equipment. Despite significant progress in recent years, a systematic and comprehensive review of high-temperature piezoelectric crystals has yet to be conducted. In this review, we delve into the crystal growth, electrical properties, crystal structures, and practical applications, including the representative rare-earth calcium oxyborate crystals [ReCaO(BO<sub>3</sub>)<sub>3</sub>, ReCOB, Re: rare earth], langasite-type crystals (La<sub>3</sub>Ga<sub>5</sub>SiO<sub>14</sub>, LGS; La<sub>3</sub>Ta<sub>0.5</sub>Ga<sub>5.5</sub>O<sub>14</sub>, LTG, <em>etc</em>.), along with several single crystals (Ba<sub>2</sub>TiSi<sub>2</sub>O<sub>8</sub>, AlN, Ca<sub>2</sub>Al<sub>2</sub>SiO<sub>7</sub>, <em>etc.</em>). In particular, the temperature dependence of electrical resistivity, dielectric, piezoelectric, elastic, and electromechanical properties are reviewed. The piezoelectric crosstalk and the impact of crystal cuts on electrical properties are discussed. Moreover, the origin of the relationship between order–disorder structures and properties of piezoelectric single crystals, as well as the conductivity mechanism, are clarified using theoretical calculations. The behaviours of these crystals in extreme conditions sensing applications are summarized, such as surface acoustic wave (SAW) sensors, vibrational sensors, acoustic emission (AE) sensors, pressure sensors, suggesting innovative design strategies for sensors with high sensitivity and performance robustness.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"156 ","pages":"Article 101556"},"PeriodicalIF":40.0000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642525001343","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Piezoelectric single crystals with high melting points are crucial for ultra-high temperature sensing applications, such as structural health monitoring and non-destructive testing of special equipment. Despite significant progress in recent years, a systematic and comprehensive review of high-temperature piezoelectric crystals has yet to be conducted. In this review, we delve into the crystal growth, electrical properties, crystal structures, and practical applications, including the representative rare-earth calcium oxyborate crystals [ReCaO(BO3)3, ReCOB, Re: rare earth], langasite-type crystals (La3Ga5SiO14, LGS; La3Ta0.5Ga5.5O14, LTG, etc.), along with several single crystals (Ba2TiSi2O8, AlN, Ca2Al2SiO7, etc.). In particular, the temperature dependence of electrical resistivity, dielectric, piezoelectric, elastic, and electromechanical properties are reviewed. The piezoelectric crosstalk and the impact of crystal cuts on electrical properties are discussed. Moreover, the origin of the relationship between order–disorder structures and properties of piezoelectric single crystals, as well as the conductivity mechanism, are clarified using theoretical calculations. The behaviours of these crystals in extreme conditions sensing applications are summarized, such as surface acoustic wave (SAW) sensors, vibrational sensors, acoustic emission (AE) sensors, pressure sensors, suggesting innovative design strategies for sensors with high sensitivity and performance robustness.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.