J. Sneha, V. Abinaya, R. Akash, R. M. Hariharan, K. Janani Sivasankar, D. John Thiruvadigal
{"title":"Exploring the structural and electronic properties of boron nitride nanotube (BNNT) as nanocarrier for drug delivery applications: DFT approach","authors":"J. Sneha, V. Abinaya, R. Akash, R. M. Hariharan, K. Janani Sivasankar, D. John Thiruvadigal","doi":"10.1007/s10822-025-00641-0","DOIUrl":null,"url":null,"abstract":"<div><p>Boron nitride nanotubes (BNNTs) have garnered significant interest due to their exceptional mechanical strength, chemical stability, and biocompatibility. However, their limited solubility in aqueous environments poses a major challenge for biomedical applications. In this study, we employ density functional theory (DFT) calculations to explore the impact of hydroxyl (–OH) and amine (–NH<sub>2</sub>) functionalization on the structural, electronic, and solubility characteristics of BNNTs. The pristine (5,5) BNNT exhibits a bandgap of 4.46 eV, which decreases upon functionalization, indicating enhanced electronic tunability. Structural modifications, including bond length elongation and charge redistribution, further influence the nanotube’s chemical reactivity and interaction with surrounding molecules. A crucial aspect of this work is the investigation of carrier solubility, which reveals a strong correlation between hydration and system stability. The Gibbs free energy of solvation becomes increasingly negative, from − 602.02 kJ/mol for BNNT4Am to − 720.18 kJ/mol for BNNT4Am-6W, suggesting enhanced solubility in aqueous environments. Stronger interactions between the functionalized BNNTs and water molecules suggest them as promising candidates for drug delivery applications. Additionally, drug interaction studies were carried out between BNNT4Am and Indole-3-Carbinol, which reflects weak electrostatic interactions and polarization effects contributing to the favorable energetics and stability of nanobiohybrid complex formation.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"39 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer-Aided Molecular Design","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-025-00641-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Boron nitride nanotubes (BNNTs) have garnered significant interest due to their exceptional mechanical strength, chemical stability, and biocompatibility. However, their limited solubility in aqueous environments poses a major challenge for biomedical applications. In this study, we employ density functional theory (DFT) calculations to explore the impact of hydroxyl (–OH) and amine (–NH2) functionalization on the structural, electronic, and solubility characteristics of BNNTs. The pristine (5,5) BNNT exhibits a bandgap of 4.46 eV, which decreases upon functionalization, indicating enhanced electronic tunability. Structural modifications, including bond length elongation and charge redistribution, further influence the nanotube’s chemical reactivity and interaction with surrounding molecules. A crucial aspect of this work is the investigation of carrier solubility, which reveals a strong correlation between hydration and system stability. The Gibbs free energy of solvation becomes increasingly negative, from − 602.02 kJ/mol for BNNT4Am to − 720.18 kJ/mol for BNNT4Am-6W, suggesting enhanced solubility in aqueous environments. Stronger interactions between the functionalized BNNTs and water molecules suggest them as promising candidates for drug delivery applications. Additionally, drug interaction studies were carried out between BNNT4Am and Indole-3-Carbinol, which reflects weak electrostatic interactions and polarization effects contributing to the favorable energetics and stability of nanobiohybrid complex formation.
期刊介绍:
The Journal of Computer-Aided Molecular Design provides a form for disseminating information on both the theory and the application of computer-based methods in the analysis and design of molecules. The scope of the journal encompasses papers which report new and original research and applications in the following areas:
- theoretical chemistry;
- computational chemistry;
- computer and molecular graphics;
- molecular modeling;
- protein engineering;
- drug design;
- expert systems;
- general structure-property relationships;
- molecular dynamics;
- chemical database development and usage.