Unsupervised Domain-Adaptive Semantic Segmentation for Surgical Instruments Leveraging Dropout-Enhanced Dual Heads and Coarse-Grained Classification Branch

IF 3.8 Q2 ENGINEERING, BIOMEDICAL
Ziqian Li;Zhengyu Wang;Xinzhou Xu;Yongfa Chen;Björn W. Schuller
{"title":"Unsupervised Domain-Adaptive Semantic Segmentation for Surgical Instruments Leveraging Dropout-Enhanced Dual Heads and Coarse-Grained Classification Branch","authors":"Ziqian Li;Zhengyu Wang;Xinzhou Xu;Yongfa Chen;Björn W. Schuller","doi":"10.1109/TMRB.2025.3561865","DOIUrl":null,"url":null,"abstract":"Accurate semantic segmentation for surgical instruments is crucial in robot-assisted minimally invasive surgery, mainly regarded as a core module in surgical-instrument tracking and operation guidance. Nevertheless, it is usually difficult for existing semantic surgical-instrument segmentation approaches to adapt to unknown surgical scenes, particularly due to their insufficient consideration for reducing the domain gaps across different scenes. To address this issue, we propose an unsupervised domain-adaptive semantic segmentation approach for surgical instruments, leveraging Dropout-enhanced Dual Heads and Coarse-Grained classification branch (D2HCG). The proposed approach comprises dropout-enhanced dual heads for diverse feature representation, and a coarse-grained classification branch for capturing complexities across varying granularities. This incorporates consistency loss functions targeting fine-grained features and coarse-grained granularities, aiming to reduce cross-scene domain gaps. Afterwards, we perform experiments in cross-scene surgical-instrument semantic segmentation cases, with the experimental results reporting the effectiveness for the proposed approach, compared with state-of-the-art semantic segmentation ones.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"950-961"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10969110/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate semantic segmentation for surgical instruments is crucial in robot-assisted minimally invasive surgery, mainly regarded as a core module in surgical-instrument tracking and operation guidance. Nevertheless, it is usually difficult for existing semantic surgical-instrument segmentation approaches to adapt to unknown surgical scenes, particularly due to their insufficient consideration for reducing the domain gaps across different scenes. To address this issue, we propose an unsupervised domain-adaptive semantic segmentation approach for surgical instruments, leveraging Dropout-enhanced Dual Heads and Coarse-Grained classification branch (D2HCG). The proposed approach comprises dropout-enhanced dual heads for diverse feature representation, and a coarse-grained classification branch for capturing complexities across varying granularities. This incorporates consistency loss functions targeting fine-grained features and coarse-grained granularities, aiming to reduce cross-scene domain gaps. Afterwards, we perform experiments in cross-scene surgical-instrument semantic segmentation cases, with the experimental results reporting the effectiveness for the proposed approach, compared with state-of-the-art semantic segmentation ones.
基于drop- enhanced双头部和粗粒度分类分支的手术器械无监督领域自适应语义分割
手术器械的准确语义分割是机器人辅助微创手术的关键,是手术器械跟踪和手术指导的核心模块。然而,现有的语义手术器械分割方法通常难以适应未知的手术场景,特别是由于它们没有充分考虑减少不同场景之间的域间隙。为了解决这个问题,我们提出了一种针对手术器械的无监督领域自适应语义分割方法,利用Dropout-enhanced Dual Heads和粗粒度分类分支(D2HCG)。提出的方法包括用于不同特征表示的dropout增强双头,以及用于捕获不同粒度复杂性的粗粒度分类分支。该方法结合了针对细粒度特征和粗粒度特征的一致性损失函数,旨在减少跨场景域间隙。然后,我们在跨场景手术器械语义分割案例中进行了实验,实验结果表明,与目前最先进的语义分割方法相比,本文提出的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信