Jonathan Wang;Hisashi Ishida;David Usevitch;Kesavan Venkatesh;Yi Wang;Mehran Armand;Rachel Bronheim;Amit Jain;Adnan Munawar
{"title":"Critical Anatomy-Preserving and Terrain-Augmenting Navigation (CAPTAiN): Application to Laminectomy Surgical Education","authors":"Jonathan Wang;Hisashi Ishida;David Usevitch;Kesavan Venkatesh;Yi Wang;Mehran Armand;Rachel Bronheim;Amit Jain;Adnan Munawar","doi":"10.1109/TMRB.2025.3589795","DOIUrl":null,"url":null,"abstract":"Surgical training remains a crucial milestone in modern medicine, with procedures such as laminectomy exemplifying the high risks involved. Laminectomy drilling requires precise manual control to mill bony tissue while preserving spinal segment integrity and avoiding breaches in the dura–the protective membrane surrounding the spinal cord. Despite unintended dural tears occurring in up to 11.3% of cases, no assistive tools are currently utilized to reduce this risk. Variability in patient anatomy further complicates learning for novice surgeons. This study introduces CAPTAiN, a critical anatomy-preserving and terrain-augmenting navigation system that provides layered, color-coded voxel guidance to enhance anatomical awareness during spinal drilling. CAPTAiN was evaluated against a standard non-navigated approach through 110 virtual laminectomies performed by 11 orthopedic residents and medical students. CAPTAiN significantly improved surgical completion rates of target anatomy (87.99% vs. 74.42%) and reduced cognitive load across multiple NASA-TLX domains. It also minimized performance gaps across experience levels, enabling novices to perform on par with advanced trainees. These findings highlight CAPTAiN’s potential to optimize surgical execution and support skill development across experience levels. Beyond laminectomy, it demonstrates potential for broader applications across various surgical and drilling procedures, including those in neurosurgery, otolaryngology, and other medical fields.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"1125-1138"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11082416/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Surgical training remains a crucial milestone in modern medicine, with procedures such as laminectomy exemplifying the high risks involved. Laminectomy drilling requires precise manual control to mill bony tissue while preserving spinal segment integrity and avoiding breaches in the dura–the protective membrane surrounding the spinal cord. Despite unintended dural tears occurring in up to 11.3% of cases, no assistive tools are currently utilized to reduce this risk. Variability in patient anatomy further complicates learning for novice surgeons. This study introduces CAPTAiN, a critical anatomy-preserving and terrain-augmenting navigation system that provides layered, color-coded voxel guidance to enhance anatomical awareness during spinal drilling. CAPTAiN was evaluated against a standard non-navigated approach through 110 virtual laminectomies performed by 11 orthopedic residents and medical students. CAPTAiN significantly improved surgical completion rates of target anatomy (87.99% vs. 74.42%) and reduced cognitive load across multiple NASA-TLX domains. It also minimized performance gaps across experience levels, enabling novices to perform on par with advanced trainees. These findings highlight CAPTAiN’s potential to optimize surgical execution and support skill development across experience levels. Beyond laminectomy, it demonstrates potential for broader applications across various surgical and drilling procedures, including those in neurosurgery, otolaryngology, and other medical fields.
外科训练在现代医学中仍然是一个重要的里程碑,椎板切除术等手术是其中高风险的例证。椎板切除钻孔需要精确的人工控制来磨碎骨组织,同时保持脊柱节段的完整性,避免硬脑膜(脊髓周围的保护膜)断裂。尽管高达11.3%的病例发生意外硬脑膜撕裂,但目前没有使用辅助工具来降低这种风险。患者解剖结构的变化进一步使外科新手的学习复杂化。本研究介绍了CAPTAiN,这是一种关键的解剖保存和地形增强导航系统,可提供分层、彩色编码的体素指导,以增强脊柱钻孔过程中的解剖意识。通过11名骨科住院医师和医学生进行的110例虚拟椎板切除术,对CAPTAiN进行了标准的非导航入路评估。CAPTAiN显著提高了靶解剖的手术完成率(87.99% vs. 74.42%),并减少了多个NASA-TLX域的认知负荷。它还最大限度地减少了经验水平之间的绩效差距,使新手与高级学员的表现不相上下。这些发现突出了CAPTAiN在优化手术执行和支持不同经验水平的技能发展方面的潜力。除了椎板切除术,它还展示了在各种外科手术和钻孔手术中更广泛应用的潜力,包括神经外科、耳鼻喉科和其他医学领域。