A Review of Flexible Bronchoscope Robots for Peripheral Pulmonary Nodule Intervention

IF 3.8 Q2 ENGINEERING, BIOMEDICAL
Yuzhou Duan;Jie Ling;Micky Rakotondrabe;Zuoqing Yu;Lei Zhang;Yuchuan Zhu
{"title":"A Review of Flexible Bronchoscope Robots for Peripheral Pulmonary Nodule Intervention","authors":"Yuzhou Duan;Jie Ling;Micky Rakotondrabe;Zuoqing Yu;Lei Zhang;Yuchuan Zhu","doi":"10.1109/TMRB.2025.3583172","DOIUrl":null,"url":null,"abstract":"The development of procedure-specific surgical robots has become essential for tackling complex clinical challenges. Flexible bronchoscope robots (FBRs) have emerged over the past decade, revealing broad prospects for the safe, precise, and reliable diagnosis of peripheral pulmonary nodules (PPNs), which is crucial for enabling early lung cancer treatment. However, in advancing FBR development, roboticists sometimes stray from or overlook practical surgical considerations, which might impede its clinical implementation. This review aims to bridge this gap by offering an engineering-focused perspective enriched with critical medical insights to drive the clinical translation of next-generation FBRs. We begin by highlighting the medical significance and current state of FBR research. Then, we outline the “ambient environments” of FBRs: the supported procedure, robotic system, steering tools, and deployment modes. Subsequently, we summarize recent progress in FBR technology, focusing on two key areas: procedure-specific design and modeling to improve intervention capabilities, and autonomous navigation and control strategies to enhance autonomy. Based on the given analysis, we discuss the development directions of next-generation FBRs according to the current clinical challenges and the engineering approaches to their realization.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"845-862"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11051056/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of procedure-specific surgical robots has become essential for tackling complex clinical challenges. Flexible bronchoscope robots (FBRs) have emerged over the past decade, revealing broad prospects for the safe, precise, and reliable diagnosis of peripheral pulmonary nodules (PPNs), which is crucial for enabling early lung cancer treatment. However, in advancing FBR development, roboticists sometimes stray from or overlook practical surgical considerations, which might impede its clinical implementation. This review aims to bridge this gap by offering an engineering-focused perspective enriched with critical medical insights to drive the clinical translation of next-generation FBRs. We begin by highlighting the medical significance and current state of FBR research. Then, we outline the “ambient environments” of FBRs: the supported procedure, robotic system, steering tools, and deployment modes. Subsequently, we summarize recent progress in FBR technology, focusing on two key areas: procedure-specific design and modeling to improve intervention capabilities, and autonomous navigation and control strategies to enhance autonomy. Based on the given analysis, we discuss the development directions of next-generation FBRs according to the current clinical challenges and the engineering approaches to their realization.
柔性支气管镜机器人用于外周肺结节介入治疗的研究进展
特定手术机器人的发展对于解决复杂的临床挑战至关重要。在过去的十年中,柔性支气管镜机器人(FBRs)的出现为安全、精确、可靠地诊断周围性肺结节(ppn)揭示了广阔的前景,这对早期肺癌治疗至关重要。然而,在推进FBR发展的过程中,机器人专家有时会偏离或忽视实际的外科考虑,这可能会阻碍其临床应用。本综述旨在通过提供一个以工程为中心的视角,丰富关键的医学见解,以推动下一代fbr的临床转化,从而弥合这一差距。我们首先强调了FBR的医学意义和研究现状。然后,我们概述了fbr的“环境环境”:支持的程序、机器人系统、转向工具和部署模式。随后,我们总结了FBR技术的最新进展,重点关注两个关键领域:提高干预能力的特定程序设计和建模,以及提高自主性的自主导航和控制策略。在此基础上,根据目前的临床挑战和实现新一代快速反应器的工程途径,讨论了新一代快速反应器的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信