Shape Sensing for Continuum Robots Based on MWCNTs-PDMS Flexible Resistive Strain Sensors

IF 3.8 Q2 ENGINEERING, BIOMEDICAL
Lizhi Pan;Tianze Zhang;Yiding Cheng;Zhikang Ma;Jianmin Li
{"title":"Shape Sensing for Continuum Robots Based on MWCNTs-PDMS Flexible Resistive Strain Sensors","authors":"Lizhi Pan;Tianze Zhang;Yiding Cheng;Zhikang Ma;Jianmin Li","doi":"10.1109/TMRB.2025.3573436","DOIUrl":null,"url":null,"abstract":"Continuum robots show great potential in the medical field owing to their theoretically infinite degrees of freedom, but they still face challenges in shape sensing. This study focuses on shape sensing of continuum robots and designs a low-cost flexible resistive strain sensor based on multi-walled carbon nanotubes and polydimethylsiloxane. The sensor exhibits high linearity over the bending range of 0°-65° and offers 100% elongation at break and excellent mechanical properties, also showing good biocompatibility and environmental adaptability. A <inline-formula> <tex-math>$3{\\times }3$ </tex-math></inline-formula> array of these sensors is attached to the continuum surgical robot to realize shape sensing. The angle change of the continuum at each position is determined from the resistance change of each sensor during bending. The position information of five key points can be obtained from these angles, and the shape is reconstructed by fitting each point. Experimental results show that the proposed sensor can accurately sense various bending shapes of the continuum within the stable linear bending range, and the position error of the distal end fluctuates about 2% of the overall shape. This study provides a new solution for shape sensing of continuum surgical robots, demonstrating strong application potential.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"1286-1296"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11015530/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Continuum robots show great potential in the medical field owing to their theoretically infinite degrees of freedom, but they still face challenges in shape sensing. This study focuses on shape sensing of continuum robots and designs a low-cost flexible resistive strain sensor based on multi-walled carbon nanotubes and polydimethylsiloxane. The sensor exhibits high linearity over the bending range of 0°-65° and offers 100% elongation at break and excellent mechanical properties, also showing good biocompatibility and environmental adaptability. A $3{\times }3$ array of these sensors is attached to the continuum surgical robot to realize shape sensing. The angle change of the continuum at each position is determined from the resistance change of each sensor during bending. The position information of five key points can be obtained from these angles, and the shape is reconstructed by fitting each point. Experimental results show that the proposed sensor can accurately sense various bending shapes of the continuum within the stable linear bending range, and the position error of the distal end fluctuates about 2% of the overall shape. This study provides a new solution for shape sensing of continuum surgical robots, demonstrating strong application potential.
基于MWCNTs-PDMS柔性电阻应变传感器的连续体机器人形状传感
连续体机器人由于理论上具有无限的自由度,在医疗领域显示出巨大的潜力,但在形状感知方面仍面临挑战。针对连续体机器人的形状传感问题,设计了一种基于多壁碳纳米管和聚二甲基硅氧烷的低成本柔性电阻应变传感器。该传感器在0°-65°的弯曲范围内具有高线性度,并提供100%的断裂伸长率和优异的机械性能,同时具有良好的生物相容性和环境适应性。这些传感器的$3{\times}3$阵列附着在连续体手术机器人上,以实现形状感知。连续体在每个位置的角度变化是由每个传感器在弯曲过程中的电阻变化确定的。从这些角度可以得到5个关键点的位置信息,并通过对每个关键点的拟合重建形状。实验结果表明,该传感器能在稳定的线性弯曲范围内准确感知连续体的各种弯曲形状,远端位置误差波动在整体形状的2%左右。该研究为连续体手术机器人的形状感知提供了一种新的解决方案,具有很强的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信