Process-Aware Digital Twins by Deep Learning for DUV Photolithography and Plasma Etch

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Christina L. Lau;Shuhan Ding;Yutong Xie;Edwin R. Law;Bahar Kor;Benyamin Davaji;Amit Lal;Peter C. Doerschuk
{"title":"Process-Aware Digital Twins by Deep Learning for DUV Photolithography and Plasma Etch","authors":"Christina L. Lau;Shuhan Ding;Yutong Xie;Edwin R. Law;Bahar Kor;Benyamin Davaji;Amit Lal;Peter C. Doerschuk","doi":"10.1109/TSM.2025.3582194","DOIUrl":null,"url":null,"abstract":"Computer representations of the structure, context, and behavior of physical systems are critical components of computational system optimization. Traditionally, such optimization is done by iterative physical experiments, which can be expensive both in time and resources. In this paper, these computer representations, called digital twins, are developed primarily using SEM images and equipment process parameters. HyperPix2Pix, the proposed methodology of the digital twins, is a deep neural network that uses SEM images of the input structure together with equipment process parameters to predict the output SEM images. We demonstrate HyperPix2Pix on a DUV photolithography stepper and plasma etcher. HyperPix2Pix predicts output images that closely match the experimental output images and have very similar critical dimensions. Compared to previous work, HyperPix2Pix includes the effects of process parameters through multimodal learning, elucidating the role of different parameters in nanofabrication processes and their effects on critical dimensions of the resulting structures.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"38 3","pages":"634-641"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11048361/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Computer representations of the structure, context, and behavior of physical systems are critical components of computational system optimization. Traditionally, such optimization is done by iterative physical experiments, which can be expensive both in time and resources. In this paper, these computer representations, called digital twins, are developed primarily using SEM images and equipment process parameters. HyperPix2Pix, the proposed methodology of the digital twins, is a deep neural network that uses SEM images of the input structure together with equipment process parameters to predict the output SEM images. We demonstrate HyperPix2Pix on a DUV photolithography stepper and plasma etcher. HyperPix2Pix predicts output images that closely match the experimental output images and have very similar critical dimensions. Compared to previous work, HyperPix2Pix includes the effects of process parameters through multimodal learning, elucidating the role of different parameters in nanofabrication processes and their effects on critical dimensions of the resulting structures.
基于深度学习的DUV光刻和等离子蚀刻工艺感知数字孪生
物理系统的结构、环境和行为的计算机表示是计算系统优化的关键组成部分。传统上,这种优化是通过迭代的物理实验来完成的,这在时间和资源上都是昂贵的。在本文中,这些计算机表示,称为数字双胞胎,主要是利用扫描电镜图像和设备工艺参数开发的。HyperPix2Pix是一种深度神经网络,它使用输入结构的SEM图像和设备工艺参数来预测输出的SEM图像。我们在DUV光刻步进器和等离子蚀刻机上演示了HyperPix2Pix。HyperPix2Pix预测的输出图像与实验输出图像非常匹配,并且具有非常相似的临界尺寸。与以前的工作相比,HyperPix2Pix通过多模态学习包括工艺参数的影响,阐明了不同参数在纳米加工过程中的作用及其对所得到结构的关键尺寸的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Semiconductor Manufacturing 工程技术-工程:电子与电气
CiteScore
5.20
自引率
11.10%
发文量
101
审稿时长
3.3 months
期刊介绍: The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信