{"title":"\"Persuasive Vibrations\": Studying the influence of vibration parameters on speech persuasion.","authors":"Sabrina Toofany, Anatole Lecuyer, Ferran Argelaguet, Justine Saint-Aubert","doi":"10.1109/TOH.2025.3600579","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates the notion of \"Persuasive Vibrations\", which showed that augmenting a person's speech with vibrotactile feedback could artificially increase persuasion. However, while the initial paper has shown the effect, the underlying reasons why vibrations enhance persuasion remain unknown. Through two different user studies, this paper aims to study how the underlying parameters of the vibratory feedback (e.g., frequency, amplitude, or audio-vibration synchronization) influence persuasion. The first study aimed to identify the parameters of vibrotactile feedback that can positively influence persuasion. The second study evaluated vibrotactile feedback that might impair the persuasive effect. In a nutshell, the first experiment suggests that the isolation of different properties of the vibratory signal could tend to provide higher persuasion compared to no vibratory feedback. A lower frequency at 100 Hz seems the most efficient way to generate a persuasive effect. In contrast, the second experiment suggests that some alteration of the vibratory signal ( e.g., latency) does not decrease the levels of persuasion compared to the no-vibration condition. All in all, the results suggest that using lower frequencies could have a better effect on persuasion. These results could serve as a basis for haptic design in applications like videoconferencing, virtual meetings, and training systems where supporting user speech is essential.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2025.3600579","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the notion of "Persuasive Vibrations", which showed that augmenting a person's speech with vibrotactile feedback could artificially increase persuasion. However, while the initial paper has shown the effect, the underlying reasons why vibrations enhance persuasion remain unknown. Through two different user studies, this paper aims to study how the underlying parameters of the vibratory feedback (e.g., frequency, amplitude, or audio-vibration synchronization) influence persuasion. The first study aimed to identify the parameters of vibrotactile feedback that can positively influence persuasion. The second study evaluated vibrotactile feedback that might impair the persuasive effect. In a nutshell, the first experiment suggests that the isolation of different properties of the vibratory signal could tend to provide higher persuasion compared to no vibratory feedback. A lower frequency at 100 Hz seems the most efficient way to generate a persuasive effect. In contrast, the second experiment suggests that some alteration of the vibratory signal ( e.g., latency) does not decrease the levels of persuasion compared to the no-vibration condition. All in all, the results suggest that using lower frequencies could have a better effect on persuasion. These results could serve as a basis for haptic design in applications like videoconferencing, virtual meetings, and training systems where supporting user speech is essential.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.