"Persuasive Vibrations": Studying the influence of vibration parameters on speech persuasion.

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS
Sabrina Toofany, Anatole Lecuyer, Ferran Argelaguet, Justine Saint-Aubert
{"title":"\"Persuasive Vibrations\": Studying the influence of vibration parameters on speech persuasion.","authors":"Sabrina Toofany, Anatole Lecuyer, Ferran Argelaguet, Justine Saint-Aubert","doi":"10.1109/TOH.2025.3600579","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates the notion of \"Persuasive Vibrations\", which showed that augmenting a person's speech with vibrotactile feedback could artificially increase persuasion. However, while the initial paper has shown the effect, the underlying reasons why vibrations enhance persuasion remain unknown. Through two different user studies, this paper aims to study how the underlying parameters of the vibratory feedback (e.g., frequency, amplitude, or audio-vibration synchronization) influence persuasion. The first study aimed to identify the parameters of vibrotactile feedback that can positively influence persuasion. The second study evaluated vibrotactile feedback that might impair the persuasive effect. In a nutshell, the first experiment suggests that the isolation of different properties of the vibratory signal could tend to provide higher persuasion compared to no vibratory feedback. A lower frequency at 100 Hz seems the most efficient way to generate a persuasive effect. In contrast, the second experiment suggests that some alteration of the vibratory signal ( e.g., latency) does not decrease the levels of persuasion compared to the no-vibration condition. All in all, the results suggest that using lower frequencies could have a better effect on persuasion. These results could serve as a basis for haptic design in applications like videoconferencing, virtual meetings, and training systems where supporting user speech is essential.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2025.3600579","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the notion of "Persuasive Vibrations", which showed that augmenting a person's speech with vibrotactile feedback could artificially increase persuasion. However, while the initial paper has shown the effect, the underlying reasons why vibrations enhance persuasion remain unknown. Through two different user studies, this paper aims to study how the underlying parameters of the vibratory feedback (e.g., frequency, amplitude, or audio-vibration synchronization) influence persuasion. The first study aimed to identify the parameters of vibrotactile feedback that can positively influence persuasion. The second study evaluated vibrotactile feedback that might impair the persuasive effect. In a nutshell, the first experiment suggests that the isolation of different properties of the vibratory signal could tend to provide higher persuasion compared to no vibratory feedback. A lower frequency at 100 Hz seems the most efficient way to generate a persuasive effect. In contrast, the second experiment suggests that some alteration of the vibratory signal ( e.g., latency) does not decrease the levels of persuasion compared to the no-vibration condition. All in all, the results suggest that using lower frequencies could have a better effect on persuasion. These results could serve as a basis for haptic design in applications like videoconferencing, virtual meetings, and training systems where supporting user speech is essential.

“说服性振动”:研究振动参数对言语说服的影响。
本文研究了“说服性振动”的概念,该概念表明,用振动触觉反馈来增强一个人的演讲可以人为地增加说服力。然而,虽然最初的论文已经展示了这种效果,但振动增强说服力的潜在原因仍然未知。通过两种不同的用户研究,本文旨在研究振动反馈的底层参数(如频率、幅度或音频-振动同步)如何影响说服。第一项研究旨在确定振动触觉反馈对说服有积极影响的参数。第二项研究评估了振动触觉反馈可能会损害说服效果。简而言之,第一个实验表明,与没有振动反馈相比,隔离振动信号的不同特性可能倾向于提供更高的说服力。100赫兹的较低频率似乎是产生说服力效果的最有效方式。相反,第二个实验表明,与无振动条件相比,振动信号的一些改变(例如,延迟)并不会降低说服的水平。总而言之,结果表明,使用较低的频率可能对说服有更好的效果。这些结果可以作为视频会议、虚拟会议和培训系统等应用中触觉设计的基础,在这些应用中,支持用户语音是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Haptics
IEEE Transactions on Haptics COMPUTER SCIENCE, CYBERNETICS-
CiteScore
5.90
自引率
13.80%
发文量
109
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信