{"title":"Advancements in multimodal differential evolution: a comprehensive review and future perspectives","authors":"Dikshit Chauhan, Shivani, Donghwi Jung, Anupam Yadav","doi":"10.1007/s10462-025-11314-7","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-modal optimization involves identifying multiple global and local optima of a function, offering valuable insights into diverse optimal solutions within the search space. Evolutionary algorithms (EAs) excel at finding various solutions in a single run, providing a distinct advantage over classical optimization techniques that often require multiple restarts without guarantee of obtaining diverse solutions. Among these EAs, differential evolution (DE) stands out as a powerful and versatile optimizer for continuous parameter spaces. DE has shown significant success in multi-modal optimization by utilizing its population-based search to promote the formation of multiple stable subpopulations, each targeting different optima. Recent advancements in DE for multi-modal optimization have focused on niching methods, parameter adaptation, hybridization with other algorithms, including machine learning, and applications across various domains. Given these developments, it is an opportune moment to present a critical review of the latest literature and identify key future research directions. This paper offers a comprehensive overview of recent DE advancements in multimodal optimization, including methods for handling multiple optima, hybridization with EAs, and machine learning, and highlights a range of real-world applications. Additionally, the paper outlines a set of compelling open problems and future research issues from multiple perspectives.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 11","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11314-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11314-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-modal optimization involves identifying multiple global and local optima of a function, offering valuable insights into diverse optimal solutions within the search space. Evolutionary algorithms (EAs) excel at finding various solutions in a single run, providing a distinct advantage over classical optimization techniques that often require multiple restarts without guarantee of obtaining diverse solutions. Among these EAs, differential evolution (DE) stands out as a powerful and versatile optimizer for continuous parameter spaces. DE has shown significant success in multi-modal optimization by utilizing its population-based search to promote the formation of multiple stable subpopulations, each targeting different optima. Recent advancements in DE for multi-modal optimization have focused on niching methods, parameter adaptation, hybridization with other algorithms, including machine learning, and applications across various domains. Given these developments, it is an opportune moment to present a critical review of the latest literature and identify key future research directions. This paper offers a comprehensive overview of recent DE advancements in multimodal optimization, including methods for handling multiple optima, hybridization with EAs, and machine learning, and highlights a range of real-world applications. Additionally, the paper outlines a set of compelling open problems and future research issues from multiple perspectives.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.