{"title":"Development and demonstration of an active optical axis alignment method for divertor infrared thermography system in ITER.","authors":"Tomohiko Ushiki, Ryota Imazawa, Tatsuo Sugie, Kosuke Shimizu, Shunsuke Tainaka, Naoto Kasano, Hiroyuki Tachibana, Butch Buenavidez, Yuzi Katayanagi, Yoshihiko Nunoya","doi":"10.1063/5.0273766","DOIUrl":null,"url":null,"abstract":"<p><p>An active alignment method to compensate for optical axis misalignment between the in-vessel and ex-vessel optics caused by thermal expansion of the vacuum vessel during plasma operation was developed in this study. By observing the return light from an alignment pattern at the vacuum window and a calibration light source positioned at the first pupil plane inside the vacuum vessel, subsequent optical axis alignment during plasma operation can be conducted using only the return light from the alignment pattern. Testing with a prototype demonstrated that the developed alignment method can align the optical axis remotely and actively with accuracies of less than 0.03° for angular decentration, less than 1 mm for parallel decentration, and less than 5 mm for optical path length displacement.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 8","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0273766","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
An active alignment method to compensate for optical axis misalignment between the in-vessel and ex-vessel optics caused by thermal expansion of the vacuum vessel during plasma operation was developed in this study. By observing the return light from an alignment pattern at the vacuum window and a calibration light source positioned at the first pupil plane inside the vacuum vessel, subsequent optical axis alignment during plasma operation can be conducted using only the return light from the alignment pattern. Testing with a prototype demonstrated that the developed alignment method can align the optical axis remotely and actively with accuracies of less than 0.03° for angular decentration, less than 1 mm for parallel decentration, and less than 5 mm for optical path length displacement.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.