Homomorphisms from the Coxeter graph

IF 1.1 3区 数学 Q1 MATHEMATICS
Marko Orel , Draženka Višnjić
{"title":"Homomorphisms from the Coxeter graph","authors":"Marko Orel ,&nbsp;Draženka Višnjić","doi":"10.1016/j.laa.2025.08.003","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> be the set of all <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> symmetric matrices with coefficients in the binary field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>, and let <span><math><mi>S</mi><mi>G</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> be its subset formed by invertible matrices. Let <span><math><msub><mrow><mover><mrow><mi>Γ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the graph with the vertex set <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> where a pair of vertices <span><math><mo>{</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>}</mo></math></span> form an edge if and only if <span><math><mrow><mi>rank</mi></mrow><mo>(</mo><mi>A</mi><mo>−</mo><mi>B</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. Similarly, let <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the subgraph in <span><math><msub><mrow><mover><mrow><mi>Γ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span>, which is induced by the set <span><math><mi>S</mi><mi>G</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Graph <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> generalizes the well-known Coxeter graph, which is isomorphic to <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>. Motivated by research topics in coding theory, matrix theory, and graph theory, this paper represents the first step towards the characterization of all graph homomorphisms <span><math><mi>Φ</mi><mo>:</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mover><mrow><mi>Γ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>m</mi></mrow></msub></math></span> where <span><math><mi>n</mi><mo>,</mo><mi>m</mi></math></span> are positive integers. Here, the case <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span> is solved.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"727 ","pages":"Pages 129-162"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003398","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Sn(F2) be the set of all n×n symmetric matrices with coefficients in the binary field F2={0,1}, and let SGLn(F2) be its subset formed by invertible matrices. Let Γˆn be the graph with the vertex set Sn(F2) where a pair of vertices {A,B} form an edge if and only if rank(AB)=1. Similarly, let Γn be the subgraph in Γˆn, which is induced by the set SGLn(F2). Graph Γn generalizes the well-known Coxeter graph, which is isomorphic to Γ3. Motivated by research topics in coding theory, matrix theory, and graph theory, this paper represents the first step towards the characterization of all graph homomorphisms Φ:ΓnΓˆm where n,m are positive integers. Here, the case n=3 is solved.
Coxeter图中的同态
设Sn(F2)为二元域F2={0,1}中系数为所有n×n对称矩阵的集合,设SGLn(F2)为由可逆矩阵构成的子集。设Γ * n为顶点集Sn(F2)的图,其中一对顶点{a,B}形成一条边当且仅当秩(a−B)=1。同理,设Γn为Γ * n中的子图,由集合SGLn(F2)导出。图Γn推广了著名的考克斯特图,它与Γ3同构。在编码理论,矩阵理论和图论的研究主题的激励下,本文代表了向所有图同态表征的第一步Φ:Γn→Γ³m,其中n,m是正整数。这里,情况n=3就解决了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信