Alican Caglar;Imri Fattal;Clement Godfrin;Roy Li;Steven Van Winckel;Kristiaan De Greve;Piet Wambacq;Jan Craninckx
{"title":"A Scalable mK DC Demultiplexer With Extremely Low OFF-Leakage CMOS Switches for Biasing of Spin Qubits","authors":"Alican Caglar;Imri Fattal;Clement Godfrin;Roy Li;Steven Van Winckel;Kristiaan De Greve;Piet Wambacq;Jan Craninckx","doi":"10.1109/LSSC.2025.3591584","DOIUrl":null,"url":null,"abstract":"This letter demonstrates a DC demultiplexer using CMOS switches with extremely low OFF-state current at mK temperatures. The DC demultiplexer is designed to reduce the number of interconnections needed for voltage biasing of large-scale spin qubit arrays. The demultiplexer utilizes a T-switch structure and thick-oxide devices in a 65 nm bulk CMOS technology to avoid current leakage in the OFF-state of switches at mK temperatures, which enables preservation of a voltage stored on a capacitor without the need for resampling thereby reducing dynamic power consumption. The demultiplexer has a static power consumption of 33 nW with 4 inputs and 16 outputs, which can be scaled up using the SPI interface of the demultiplexer in a daisy-chain configuration. With its scalability, ultralow static power dissipation, and extremely low OFF-leakage current, the DC demultiplexer can help mitigate the wiring bottleneck of spin-based quantum computers at the base stage of dilution refrigerators.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"221-224"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11089952/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This letter demonstrates a DC demultiplexer using CMOS switches with extremely low OFF-state current at mK temperatures. The DC demultiplexer is designed to reduce the number of interconnections needed for voltage biasing of large-scale spin qubit arrays. The demultiplexer utilizes a T-switch structure and thick-oxide devices in a 65 nm bulk CMOS technology to avoid current leakage in the OFF-state of switches at mK temperatures, which enables preservation of a voltage stored on a capacitor without the need for resampling thereby reducing dynamic power consumption. The demultiplexer has a static power consumption of 33 nW with 4 inputs and 16 outputs, which can be scaled up using the SPI interface of the demultiplexer in a daisy-chain configuration. With its scalability, ultralow static power dissipation, and extremely low OFF-leakage current, the DC demultiplexer can help mitigate the wiring bottleneck of spin-based quantum computers at the base stage of dilution refrigerators.