Youngsin Park , Atanu Jana , Sangeun Cho , Robert A. Taylor , Geunsik Lee
{"title":"Simultaneous bright singlet and triplet emissions in CsPbBr3 nanocrystals for next-generation light sources","authors":"Youngsin Park , Atanu Jana , Sangeun Cho , Robert A. Taylor , Geunsik Lee","doi":"10.1016/j.mtphys.2025.101839","DOIUrl":null,"url":null,"abstract":"<div><div>Lead halide perovskite nanocrystals exhibit excellent optoelectronic properties, yet simultaneous observation of bright singlet and triplet exciton emissions under identical conditions has remained elusive. This limitation hinders optimization of quantum efficiency in light-emitting devices. Here, we provide the direct spectroscopic evidence for coexisting bright singlet and triplet excitons in CsPbBr<sub>3</sub> nanocrystals, overcoming the conventional 25 % spin-statistical efficiency ceiling. Using polarization-resolved, spatially resolved, and time-resolved micro-photoluminescence at 7 K, we resolve three sharp triplet fine-structure components (T1, T2, T3) with energy separations of 1–3 meV and linear polarization >85 %, coexisting with broad singlet emission. The triplet emissions display distinct polarization axes, nonlinear intensity scaling, and nanosecond lifetimes, confirming their assignment as Rashba-split bright triplet states. Spatial mapping reveals that these emissions arise from structurally pristine domains with exciton diffusion lengths exceeding 9 μm. Time-resolved measurements show concurrent fast and slow decay components, consistent with singlet-to-triplet intersystem crossing followed by radiative triplet recombination. Our findings establish a comprehensive picture of exciton spin dynamics in perovskite nanocrystals and open new avenues for spin-engineered photonic devices. This work lays the foundation for next-generation LEDs, lasers, and quantum light sources that leverage both singlet and triplet radiative channels to exceed traditional efficiency limits. While these findings are demonstrated at cryogenic temperatures, they highlight essential spin-related mechanisms that could be harnessed for room-temperature operation through enhanced Rashba coupling, dielectric engineering, or compositional tuning.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"57 ","pages":"Article 101839"},"PeriodicalIF":9.7000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325001956","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lead halide perovskite nanocrystals exhibit excellent optoelectronic properties, yet simultaneous observation of bright singlet and triplet exciton emissions under identical conditions has remained elusive. This limitation hinders optimization of quantum efficiency in light-emitting devices. Here, we provide the direct spectroscopic evidence for coexisting bright singlet and triplet excitons in CsPbBr3 nanocrystals, overcoming the conventional 25 % spin-statistical efficiency ceiling. Using polarization-resolved, spatially resolved, and time-resolved micro-photoluminescence at 7 K, we resolve three sharp triplet fine-structure components (T1, T2, T3) with energy separations of 1–3 meV and linear polarization >85 %, coexisting with broad singlet emission. The triplet emissions display distinct polarization axes, nonlinear intensity scaling, and nanosecond lifetimes, confirming their assignment as Rashba-split bright triplet states. Spatial mapping reveals that these emissions arise from structurally pristine domains with exciton diffusion lengths exceeding 9 μm. Time-resolved measurements show concurrent fast and slow decay components, consistent with singlet-to-triplet intersystem crossing followed by radiative triplet recombination. Our findings establish a comprehensive picture of exciton spin dynamics in perovskite nanocrystals and open new avenues for spin-engineered photonic devices. This work lays the foundation for next-generation LEDs, lasers, and quantum light sources that leverage both singlet and triplet radiative channels to exceed traditional efficiency limits. While these findings are demonstrated at cryogenic temperatures, they highlight essential spin-related mechanisms that could be harnessed for room-temperature operation through enhanced Rashba coupling, dielectric engineering, or compositional tuning.
期刊介绍:
Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.