{"title":"Exploring the Neurobiological Mechanisms of Cancer Growth.","authors":"Md Sadique Hussain, Mudasir Maqbool, Mohit Agrawal, Amita Joshi Rana, Ayesha Sultana, Nasreen Sulthana, Ajay Singh Bisht, Gyas Khan","doi":"10.2174/0113816128402718250806151308","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging evidence reveals that interactions between the nervous system and tumor biology significantly influence cancer progression, metastasis, and therapeutic outcomes. This review elucidates the neurobiological mechanisms that underpin tumor development, highlighting the dynamic role of neural components within the tumor microenvironment (TME). Neural signals and structural adaptations in the TME stimulate tumorigenesis and enable cancer cell plasticity, mimicking neurodevelopmental processes. Astrocytic glial cells release neurotrophic factors that support metastatic colonization and enhance tumor cell survival. Notably, cancer cells can establish pseudo-tripartite synapses with neurons, promoting both proliferation and invasion. We explore the cancer-neural network interplay, emphasizing how axonal remodeling, circuit reorganization, and synaptic dysfunction not only drive tumor growth but also contribute to associated symptoms like seizures and chronic pain. Molecularly, mutations such as in PIK3CA and abnormalities in neurotransmitter signaling reveal how neuro-tumors communicate and adapt. Furthermore, metabolic stress responses from tumor cells can activate nociceptive neurons, sustaining malignant progression. Understanding these neurobiological interactions opens avenues for novel therapeutic strategies. Precision neuro-oncology may benefit from targeting neurotrophic signaling, synaptic pathways, and neuronal differentiation programs. Advances in biomarker research from neuro-tumors also contribute to improved diagnostic and prognostic tools. By integrating neuroscience insights into oncological frameworks, we propose a paradigm shift toward therapies that intercept the neural circuitry sustaining malignancies. This neuro-oncological approach holds promise in addressing aggressive cancer phenotypes and improving patient outcomes.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128402718250806151308","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging evidence reveals that interactions between the nervous system and tumor biology significantly influence cancer progression, metastasis, and therapeutic outcomes. This review elucidates the neurobiological mechanisms that underpin tumor development, highlighting the dynamic role of neural components within the tumor microenvironment (TME). Neural signals and structural adaptations in the TME stimulate tumorigenesis and enable cancer cell plasticity, mimicking neurodevelopmental processes. Astrocytic glial cells release neurotrophic factors that support metastatic colonization and enhance tumor cell survival. Notably, cancer cells can establish pseudo-tripartite synapses with neurons, promoting both proliferation and invasion. We explore the cancer-neural network interplay, emphasizing how axonal remodeling, circuit reorganization, and synaptic dysfunction not only drive tumor growth but also contribute to associated symptoms like seizures and chronic pain. Molecularly, mutations such as in PIK3CA and abnormalities in neurotransmitter signaling reveal how neuro-tumors communicate and adapt. Furthermore, metabolic stress responses from tumor cells can activate nociceptive neurons, sustaining malignant progression. Understanding these neurobiological interactions opens avenues for novel therapeutic strategies. Precision neuro-oncology may benefit from targeting neurotrophic signaling, synaptic pathways, and neuronal differentiation programs. Advances in biomarker research from neuro-tumors also contribute to improved diagnostic and prognostic tools. By integrating neuroscience insights into oncological frameworks, we propose a paradigm shift toward therapies that intercept the neural circuitry sustaining malignancies. This neuro-oncological approach holds promise in addressing aggressive cancer phenotypes and improving patient outcomes.
期刊介绍:
Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.