Numerical investigation of effect of Si separator in bottom dielectric isolation forksheet FETs via in-house TCAD process emulator and device simulator
IF 1.4 4区 物理与天体物理Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"Numerical investigation of effect of Si separator in bottom dielectric isolation forksheet FETs via in-house TCAD process emulator and device simulator","authors":"In Ki Kim, Sung-Min Hong","doi":"10.1016/j.sse.2025.109211","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we investigate the effect of a Si separator on the fabrication and performance of a bottom dielectric isolation (BDI) forksheet field-effect transistor (FSFET) using our in-house technology computer-aided design process emulator and device simulator. The process emulator is implemented with a three-dimensional multi-level-set method to emulate the BDI FSFET fabrication under various process conditions. Our results demonstrate that the addition of a Si separator is a plausible option for the BDI FSFET. To verify this conclusion from an electrical performance perspective, we simulate the electrical characteristics of the devices using our in-house device simulator. The device structures generated from the process emulator are directly used for the device simulation. The device simulation results confirm that incorporating a Si separator remains the optimal choice, even when considering the device performance.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"229 ","pages":"Article 109211"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003811012500156X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we investigate the effect of a Si separator on the fabrication and performance of a bottom dielectric isolation (BDI) forksheet field-effect transistor (FSFET) using our in-house technology computer-aided design process emulator and device simulator. The process emulator is implemented with a three-dimensional multi-level-set method to emulate the BDI FSFET fabrication under various process conditions. Our results demonstrate that the addition of a Si separator is a plausible option for the BDI FSFET. To verify this conclusion from an electrical performance perspective, we simulate the electrical characteristics of the devices using our in-house device simulator. The device structures generated from the process emulator are directly used for the device simulation. The device simulation results confirm that incorporating a Si separator remains the optimal choice, even when considering the device performance.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.