{"title":"Data-driven integrated sensing and communication: Recent advances, challenges, and future prospects","authors":"Hammam Salem , Haleema Sadia , MD Muzakkir Quamar , Adeb Magad , Mohammed Elrashidy , Nasir Saeed , Mudassir Masood","doi":"10.1016/j.icte.2025.06.010","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of integrated sensing and communication (ISAC) with artificial intelligence (AI)-driven techniques has emerged as a transformative research frontier, attracting significant interest from both academia and industry. As sixth-generation (6G) networks advance to support ultra-reliable, low-latency, and high-capacity applications, machine learning (ML) has become a critical enabler for optimizing ISAC functionalities. Recent advancements in deep learning (DL) and deep reinforcement learning (DRL) have demonstrated immense potential in enhancing ISAC-based systems across diverse domains, including intelligent vehicular networks, autonomous mobility, unmanned aerial vehicles based communications, radar sensing, localization, millimeter wave/terahertz communication, and adaptive beamforming. However, despite these advancements, several challenges persist, such as real-time decision-making under resource constraints, robustness in adversarial environments, and scalability for large-scale deployments. This paper provides a comprehensive review of ML-driven ISAC methodologies, analyzing their impact on system design, computational efficiency, and real-world implementations, while also discussing existing challenges and future research directions to explore how AI can further enhance ISAC’s adaptability, resilience, and performance in next-generation wireless networks. By bridging theoretical advancements with practical implementations, this paper serves as a foundational reference for researchers, engineers, and industry stakeholders, aiming to leverage AI’s full potential in shaping the future of intelligent ISAC systems within the 6G ecosystem.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 4","pages":"Pages 790-808"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959525000918","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of integrated sensing and communication (ISAC) with artificial intelligence (AI)-driven techniques has emerged as a transformative research frontier, attracting significant interest from both academia and industry. As sixth-generation (6G) networks advance to support ultra-reliable, low-latency, and high-capacity applications, machine learning (ML) has become a critical enabler for optimizing ISAC functionalities. Recent advancements in deep learning (DL) and deep reinforcement learning (DRL) have demonstrated immense potential in enhancing ISAC-based systems across diverse domains, including intelligent vehicular networks, autonomous mobility, unmanned aerial vehicles based communications, radar sensing, localization, millimeter wave/terahertz communication, and adaptive beamforming. However, despite these advancements, several challenges persist, such as real-time decision-making under resource constraints, robustness in adversarial environments, and scalability for large-scale deployments. This paper provides a comprehensive review of ML-driven ISAC methodologies, analyzing their impact on system design, computational efficiency, and real-world implementations, while also discussing existing challenges and future research directions to explore how AI can further enhance ISAC’s adaptability, resilience, and performance in next-generation wireless networks. By bridging theoretical advancements with practical implementations, this paper serves as a foundational reference for researchers, engineers, and industry stakeholders, aiming to leverage AI’s full potential in shaping the future of intelligent ISAC systems within the 6G ecosystem.
期刊介绍:
The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.