Artificial intelligence for estimating State of Health and Remaining Useful Life of EV batteries: A systematic review

IF 4.2 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Md Shahriar Nazim , Arbil Chakma , Md. Ibne Joha, Syed Samiul Alam, Md Minhazur Rahman, Miftahul Khoir Shilahul Umam, Yeong Min Jang
{"title":"Artificial intelligence for estimating State of Health and Remaining Useful Life of EV batteries: A systematic review","authors":"Md Shahriar Nazim ,&nbsp;Arbil Chakma ,&nbsp;Md. Ibne Joha,&nbsp;Syed Samiul Alam,&nbsp;Md Minhazur Rahman,&nbsp;Miftahul Khoir Shilahul Umam,&nbsp;Yeong Min Jang","doi":"10.1016/j.icte.2025.05.013","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-ion batteries are critical to electric vehicles (EVs) but degrade over time, requiring accurate State of Health (SOH) and Remaining Useful Life (RUL) estimation. This review examines recent AI-based methods, especially Convolutional and Recurrent Neural Networks, for their effectiveness in prediction. It discusses key optimization strategies such as feature selection, parameter tuning, and transfer learning. Public datasets (NASA, CALCE, Oxford) are evaluated for benchmarking. The paper also assesses model complexity, performance metrics, and deployment challenges. Finally, it outlines future directions for improving battery management systems, supporting more efficient, reliable, and scalable integration into real-world EV applications.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 4","pages":"Pages 769-789"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240595952500075X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries are critical to electric vehicles (EVs) but degrade over time, requiring accurate State of Health (SOH) and Remaining Useful Life (RUL) estimation. This review examines recent AI-based methods, especially Convolutional and Recurrent Neural Networks, for their effectiveness in prediction. It discusses key optimization strategies such as feature selection, parameter tuning, and transfer learning. Public datasets (NASA, CALCE, Oxford) are evaluated for benchmarking. The paper also assesses model complexity, performance metrics, and deployment challenges. Finally, it outlines future directions for improving battery management systems, supporting more efficient, reliable, and scalable integration into real-world EV applications.
基于人工智能的电动汽车电池健康状态和剩余使用寿命评估综述
锂离子电池对电动汽车(ev)至关重要,但会随着时间的推移而退化,需要准确的健康状态(SOH)和剩余使用寿命(RUL)估计。本文综述了最近基于人工智能的方法,特别是卷积和循环神经网络,它们在预测方面的有效性。它讨论了关键的优化策略,如特征选择、参数调整和迁移学习。对公共数据集(NASA, CALCE, Oxford)进行基准评估。本文还评估了模型的复杂性、性能指标和部署挑战。最后,它概述了改进电池管理系统的未来方向,以支持更高效、可靠和可扩展的集成到现实世界的电动汽车应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信