Lightweight federated learning-based intrusion detection system for industrial internet of things

IF 4.2 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sun-Jin Lee, Il-Gu Lee
{"title":"Lightweight federated learning-based intrusion detection system for industrial internet of things","authors":"Sun-Jin Lee,&nbsp;Il-Gu Lee","doi":"10.1016/j.icte.2025.05.002","DOIUrl":null,"url":null,"abstract":"<div><div>As machine learning technology advances, data security becomes increasingly important. In this study, we propose an intrusion detection mechanism based on federated learning (FL) that updates only the learning weights to minimize the risk of information leakage. Considering the limited resources of industrial Internet of Things (IIoT) nodes, we propose a learning method based on data pruning. The proposed FL-based intrusion detection model was found to be more secure than the centralized model in terms of the data leakage rate. Data pruning technology reduced the memory usage by 1.4 times while maintaining 97.7 % accuracy. The proposed method detects attacks in industrial sites where large-scale IIoT nodes are installed efficiently, and protects industrial secrets and personal information effectively.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 4","pages":"Pages 690-695"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959525000645","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As machine learning technology advances, data security becomes increasingly important. In this study, we propose an intrusion detection mechanism based on federated learning (FL) that updates only the learning weights to minimize the risk of information leakage. Considering the limited resources of industrial Internet of Things (IIoT) nodes, we propose a learning method based on data pruning. The proposed FL-based intrusion detection model was found to be more secure than the centralized model in terms of the data leakage rate. Data pruning technology reduced the memory usage by 1.4 times while maintaining 97.7 % accuracy. The proposed method detects attacks in industrial sites where large-scale IIoT nodes are installed efficiently, and protects industrial secrets and personal information effectively.
面向工业物联网的轻量级联邦学习入侵检测系统
随着机器学习技术的进步,数据安全变得越来越重要。在本研究中,我们提出了一种基于联邦学习(FL)的入侵检测机制,该机制只更新学习权值,以最小化信息泄漏的风险。针对工业物联网节点资源有限的问题,提出了一种基于数据剪枝的学习方法。在数据泄漏率方面,本文提出的入侵检测模型比集中式模型更安全。数据修剪技术减少了1.4倍的内存使用,同时保持了97.7%的准确性。该方法在大规模工业物联网节点部署的工业现场高效检测攻击,有效保护工业机密和个人信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信