Ji Won Park , Seonghyeon Jeong , Hanbin Lee , So-Jeong Park , Jeong Yeon Im , Dae Hwan Kim , Yoon Jung Lee , Dong Myong Kim , Sung-Jin Choi
{"title":"Direct extraction of parasitic source and drain resistances in MOSFETs using saturation current ratio","authors":"Ji Won Park , Seonghyeon Jeong , Hanbin Lee , So-Jeong Park , Jeong Yeon Im , Dae Hwan Kim , Yoon Jung Lee , Dong Myong Kim , Sung-Jin Choi","doi":"10.1016/j.sse.2025.109209","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a saturation current ratio technique (SCRT) for the separate extraction of parasitic source and drain resistances (<em>R<sub>S</sub></em> and <em>R<sub>D</sub></em>) in metal–oxide–semiconductor field-effect transistors (MOSFETs). Unlike conventional methods that require multiple devices or prior knowledge of device parameters, SCRT enables accurate characterization of parasitic resistances using a single device through simple DC measurements. The technique employs a dual configuration by alternating the roles of the source and drain during forward and reverse measurement sweeps. By analyzing the ratio between the drain saturation currents measured in each configuration, SCRT effectively separates <em>R<sub>S</sub></em> and <em>R<sub>D</sub></em> by quantifying their individual contributions to the voltage drop across the source and drain terminals. Experimental validation on both n-channel and p-channel MOSFETs with various channel lengths and widths confirms the robustness, accuracy, and reproducibility of the proposed method. SCRT offers a practical and efficient approach for characterizing asymmetric parasitic resistances in individual devices, making it a reliable alternative to conventional extraction techniques.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"229 ","pages":"Article 109209"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125001546","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a saturation current ratio technique (SCRT) for the separate extraction of parasitic source and drain resistances (RS and RD) in metal–oxide–semiconductor field-effect transistors (MOSFETs). Unlike conventional methods that require multiple devices or prior knowledge of device parameters, SCRT enables accurate characterization of parasitic resistances using a single device through simple DC measurements. The technique employs a dual configuration by alternating the roles of the source and drain during forward and reverse measurement sweeps. By analyzing the ratio between the drain saturation currents measured in each configuration, SCRT effectively separates RS and RD by quantifying their individual contributions to the voltage drop across the source and drain terminals. Experimental validation on both n-channel and p-channel MOSFETs with various channel lengths and widths confirms the robustness, accuracy, and reproducibility of the proposed method. SCRT offers a practical and efficient approach for characterizing asymmetric parasitic resistances in individual devices, making it a reliable alternative to conventional extraction techniques.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.