MIX-ACIM: A 28-nm Mixed-Precision Analog Compute-in-Memory With Digital Feature Restoration for Vector-Matrix Multiplication

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Wei-Chun Wang;Shida Zhang;Laith Shamieh;Narasimha Vasishta Kidambi;Isha Chakraborty;Saibal Mukhopadhyay
{"title":"MIX-ACIM: A 28-nm Mixed-Precision Analog Compute-in-Memory With Digital Feature Restoration for Vector-Matrix Multiplication","authors":"Wei-Chun Wang;Shida Zhang;Laith Shamieh;Narasimha Vasishta Kidambi;Isha Chakraborty;Saibal Mukhopadhyay","doi":"10.1109/LSSC.2025.3590757","DOIUrl":null,"url":null,"abstract":"A mixed-precision analog compute-in-memory (Mix-ACIM) is presented for mixed-precision vector-matrix multiplication (VMM). The design features an all-analog current-domain fixed-point (FxP) VMM with floating-point conversion and feature restoration. A 28 nm CMOS test chip shows 41 TOPS/W and 24 TOPS/mm2 for FxP (8-bit input/weight and 12-bit output) and 24.18 TFLOPS/W and 3.3 TFLOPS/mm2 for 16-bit floating-point equivalent operation.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"213-216"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11087240/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

A mixed-precision analog compute-in-memory (Mix-ACIM) is presented for mixed-precision vector-matrix multiplication (VMM). The design features an all-analog current-domain fixed-point (FxP) VMM with floating-point conversion and feature restoration. A 28 nm CMOS test chip shows 41 TOPS/W and 24 TOPS/mm2 for FxP (8-bit input/weight and 12-bit output) and 24.18 TFLOPS/W and 3.3 TFLOPS/mm2 for 16-bit floating-point equivalent operation.
MIX-ACIM:基于矢量矩阵乘法数字特征恢复的28纳米混合精度内存模拟计算
提出了一种用于混合精度向量矩阵乘法(VMM)的混合精度内存模拟计算(Mix-ACIM)。该设计具有全模拟电流域定点(FxP) VMM,具有浮点转换和特征恢复功能。28纳米CMOS测试芯片显示41 TOPS/W和24 TOPS/mm2的FxP(8位输入/重量和12位输出)和24.18 TFLOPS/W和3.3 TFLOPS/mm2的16位浮点等效操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Solid-State Circuits Letters
IEEE Solid-State Circuits Letters Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
3.70%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信