{"title":"Detecting time drifts for securing Proof of Hardware Time in blockchain","authors":"Quentin Jayet , Christine Hennebert , Yann Kieffer , Vincent Beroulle","doi":"10.1016/j.micpro.2025.105185","DOIUrl":null,"url":null,"abstract":"<div><div>Blockchain technology enables the creation of a timestamped, shared, and replicated history of events among participants who do not trust each other. To agree on the shared history, the blockchain uses a consensus protocol, such as Nakamoto’s protocol in Bitcoin. This protocol relies on a proof that statistically ensures the elapsed time between two blocks by design through the Proof of Work (PoW) mechanism. However, PoW relies heavily on computation and is not suitable for embedded systems. Proof of Hardware Time (PoHT) aims to provide a secure by design elapsed time proof mechanism with low power consumption. PoHT is embedded in a System on Module (SoM) that features an ARM Cortex-A7 microprocessor with a TrustZone and a Trusted Platform Module. This paper focuses on the security of the elapsed time measurement during PoHT, conducting experimental attacks targeting clock oscillators under temperature variations. It presents a consolidation of the various available time sources, as well as a solution for detecting time drifts. Furthermore, an embedded architecture for the time drift detection system is outlined and experimental testing of the system is performed.</div></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"117 ","pages":"Article 105185"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933125000535","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Blockchain technology enables the creation of a timestamped, shared, and replicated history of events among participants who do not trust each other. To agree on the shared history, the blockchain uses a consensus protocol, such as Nakamoto’s protocol in Bitcoin. This protocol relies on a proof that statistically ensures the elapsed time between two blocks by design through the Proof of Work (PoW) mechanism. However, PoW relies heavily on computation and is not suitable for embedded systems. Proof of Hardware Time (PoHT) aims to provide a secure by design elapsed time proof mechanism with low power consumption. PoHT is embedded in a System on Module (SoM) that features an ARM Cortex-A7 microprocessor with a TrustZone and a Trusted Platform Module. This paper focuses on the security of the elapsed time measurement during PoHT, conducting experimental attacks targeting clock oscillators under temperature variations. It presents a consolidation of the various available time sources, as well as a solution for detecting time drifts. Furthermore, an embedded architecture for the time drift detection system is outlined and experimental testing of the system is performed.
期刊介绍:
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC).
Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.