Shannon Kincaid , Courtney P. Stickling , Kayla Farrell , Yeeun Bae , Morgan B. Patrick , Gitali Bhanot , Adam Cummings , Jennifer Abraham , Abby Alisesky , Nicole Ferrara , J. Amiel Rosenkranz , Timothy J. Jarome
{"title":"Increased DNA methylation of Igf2 in the male hippocampus regulates age-related deficits in synaptic plasticity and memory","authors":"Shannon Kincaid , Courtney P. Stickling , Kayla Farrell , Yeeun Bae , Morgan B. Patrick , Gitali Bhanot , Adam Cummings , Jennifer Abraham , Abby Alisesky , Nicole Ferrara , J. Amiel Rosenkranz , Timothy J. Jarome","doi":"10.1016/j.brainresbull.2025.111509","DOIUrl":null,"url":null,"abstract":"<div><div>The aging process is characterized by a general decline in cognitive abilities, which affects nearly 33 % of U.S. adults over the age of 70 and is a risk factor for the development of dementia and Alzheimer’s disease. Numerous studies have reported increased neuroinflammation and impaired synaptic plasticity and memory with age in the hippocampus, a major brain region involved in the formation and storage of most memories. However, much remains unknown about the mechanisms that contribute to age-related deficits in synaptic plasticity and memory. The Insulin-like growth factor 2 (<em>Igf2</em>) is a genomic imprinted gene that is expressed from a single allele in all species. Though IGF2 has been shown to be important in development, synaptic plasticity, and memory formation in the hippocampus and administration of IGF2 can improve memory late in life, whether changes in regulation of this gene contribute to age-related memory decline have yet to be explored. Here, we show that aged (24 months) male rats have increased CpG-site specific promoter methylation and reduced expression of <em>Igf2</em> in the hippocampus relative to young adult (3 months) and middle-aged (12 months) rats. Importantly, CRISPR-dCas9 mediated increase of DNA 5-hydroxymethylation, an active transcriptional mark, of the <em>Igf2</em> promoter in the hippocampus improved memory and long-term potentiation in aged, but not middle-aged, rats. These data indicate that increased DNA methylation of <em>Igf2</em> in the hippocampus contributes to age-related deficits in synaptic plasticity and memory.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"230 ","pages":"Article 111509"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923025003211","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The aging process is characterized by a general decline in cognitive abilities, which affects nearly 33 % of U.S. adults over the age of 70 and is a risk factor for the development of dementia and Alzheimer’s disease. Numerous studies have reported increased neuroinflammation and impaired synaptic plasticity and memory with age in the hippocampus, a major brain region involved in the formation and storage of most memories. However, much remains unknown about the mechanisms that contribute to age-related deficits in synaptic plasticity and memory. The Insulin-like growth factor 2 (Igf2) is a genomic imprinted gene that is expressed from a single allele in all species. Though IGF2 has been shown to be important in development, synaptic plasticity, and memory formation in the hippocampus and administration of IGF2 can improve memory late in life, whether changes in regulation of this gene contribute to age-related memory decline have yet to be explored. Here, we show that aged (24 months) male rats have increased CpG-site specific promoter methylation and reduced expression of Igf2 in the hippocampus relative to young adult (3 months) and middle-aged (12 months) rats. Importantly, CRISPR-dCas9 mediated increase of DNA 5-hydroxymethylation, an active transcriptional mark, of the Igf2 promoter in the hippocampus improved memory and long-term potentiation in aged, but not middle-aged, rats. These data indicate that increased DNA methylation of Igf2 in the hippocampus contributes to age-related deficits in synaptic plasticity and memory.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.