Digitalizing metallic materials from image segmentation to multiscale solutions via physics informed operator learning

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Shahed Rezaei, Kianoosh Taghikhani, Alexandre Viardin, Reza Najian Asl, Ali Harandi, Nikhil Vijay Jagtap, David Bailly, Hannah Naber, Alexander Gramlich, Tim Brepols, Mustapha Abouridouane, Ulrich Krupp, Thomas Bergs, Markus Apel
{"title":"Digitalizing metallic materials from image segmentation to multiscale solutions via physics informed operator learning","authors":"Shahed Rezaei, Kianoosh Taghikhani, Alexandre Viardin, Reza Najian Asl, Ali Harandi, Nikhil Vijay Jagtap, David Bailly, Hannah Naber, Alexander Gramlich, Tim Brepols, Mustapha Abouridouane, Ulrich Krupp, Thomas Bergs, Markus Apel","doi":"10.1038/s41524-025-01718-y","DOIUrl":null,"url":null,"abstract":"<p>Fast prediction of microstructural responses based on realistic material topology is vital for linking process, structure, and properties. This work presents a digital framework for metallic materials using microscale features. We explore deep learning for two primary goals: (1) segmenting experimental images to extract microstructural topology, translated into spatial property distributions; and (2) learning mappings from digital microstructures to mechanical fields using physics-informed operator learning. Loss functions are formulated using discretized weak or strong forms, and boundary conditions-Dirichlet and periodic-are embedded in the network. Input space is reduced to focus on key features of 2D and 3D materials, and generalization to varying loads and input topologies are demonstrated. Compared to FEM and FFT solvers, our models yield errors under 1–5% for averaged quantities and are over 1000× faster during 3D inference.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"37 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01718-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fast prediction of microstructural responses based on realistic material topology is vital for linking process, structure, and properties. This work presents a digital framework for metallic materials using microscale features. We explore deep learning for two primary goals: (1) segmenting experimental images to extract microstructural topology, translated into spatial property distributions; and (2) learning mappings from digital microstructures to mechanical fields using physics-informed operator learning. Loss functions are formulated using discretized weak or strong forms, and boundary conditions-Dirichlet and periodic-are embedded in the network. Input space is reduced to focus on key features of 2D and 3D materials, and generalization to varying loads and input topologies are demonstrated. Compared to FEM and FFT solvers, our models yield errors under 1–5% for averaged quantities and are over 1000× faster during 3D inference.

Abstract Image

通过物理信息算子学习实现金属材料从图像分割到多尺度解决方案的数字化
基于真实材料拓扑结构的微结构响应快速预测对于连接工艺、结构和性能至关重要。这项工作提出了一个利用微尺度特征的金属材料的数字框架。我们探索深度学习有两个主要目标:(1)分割实验图像以提取微观结构拓扑,并将其转化为空间属性分布;(2)使用物理信息算子学习从数字微观结构到机械领域的学习映射。用离散的弱或强形式表示损失函数,并在网络中嵌入dirichlet和周期边界条件。将输入空间简化为关注2D和3D材料的关键特征,并演示了对不同负载和输入拓扑的推广。与FEM和FFT求解器相比,我们的模型在平均数量上的误差在1-5%以下,在3D推理期间的速度超过1000倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信