Machine learning models for predicting the hydrogenic impurity nonlinear optical rectification in GaAs/AlGaAs Tetrapod core/shell quantum dots under the effect of temperature

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. Cherni , N. Zeiri , David B. Hayrapetyan , A. Ed-Dahmouny , M.E. El Sayed , A. Samir , C.A. Duque
{"title":"Machine learning models for predicting the hydrogenic impurity nonlinear optical rectification in GaAs/AlGaAs Tetrapod core/shell quantum dots under the effect of temperature","authors":"A. Cherni ,&nbsp;N. Zeiri ,&nbsp;David B. Hayrapetyan ,&nbsp;A. Ed-Dahmouny ,&nbsp;M.E. El Sayed ,&nbsp;A. Samir ,&nbsp;C.A. Duque","doi":"10.1016/j.mtphys.2025.101833","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate the nonlinear optical rectification (NOR) between the first and excited states in GaAs/AlGaAs Tetrapod Core/Shell Quantum Dots (TCSQDs) under the effect of temperature, using the compact density matrix formalism. The energy levels and wave functions are computed by solving the Schrödinger equation with the Finite Element Method (FEM) within the framework of the effective mass approximation (EMA). The objective of the present study is to develop an accurate and efficient method for modelling and predicting the NOR coefficient related to E<sub>23</sub> transition, taking into account the influence of temperature variations on the quantum dot system. To achieve this, we apply a range of machine learning (ML) algorithms, including Artificial Neural Networks (ANN), Decision Tree (DT), and Random Forest Regression (RFR). Among these, Random Forest Regression yields the best performance, achieving R<sup>2</sup> = 0.99940, MSE = 1.10 × 10<sup>−4</sup>, and MAE = 0.00510 at room temperature. The importance of this work lies in its potential to provide valuable insights for neither designing advanced quantum dot-based optoelectronic devices, such as infrared detectors and photonic components, where temperature-dependent NOR are properties crucial for performance optimization. Furthermore, the application of ML techniques in this context offers a promising approach for efficient and accurate modelling of complex quantum systems, facilitating the development of future quantum technologies.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"58 ","pages":"Article 101833"},"PeriodicalIF":9.7000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325001890","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate the nonlinear optical rectification (NOR) between the first and excited states in GaAs/AlGaAs Tetrapod Core/Shell Quantum Dots (TCSQDs) under the effect of temperature, using the compact density matrix formalism. The energy levels and wave functions are computed by solving the Schrödinger equation with the Finite Element Method (FEM) within the framework of the effective mass approximation (EMA). The objective of the present study is to develop an accurate and efficient method for modelling and predicting the NOR coefficient related to E23 transition, taking into account the influence of temperature variations on the quantum dot system. To achieve this, we apply a range of machine learning (ML) algorithms, including Artificial Neural Networks (ANN), Decision Tree (DT), and Random Forest Regression (RFR). Among these, Random Forest Regression yields the best performance, achieving R2 = 0.99940, MSE = 1.10 × 10−4, and MAE = 0.00510 at room temperature. The importance of this work lies in its potential to provide valuable insights for neither designing advanced quantum dot-based optoelectronic devices, such as infrared detectors and photonic components, where temperature-dependent NOR are properties crucial for performance optimization. Furthermore, the application of ML techniques in this context offers a promising approach for efficient and accurate modelling of complex quantum systems, facilitating the development of future quantum technologies.
温度影响下GaAs/AlGaAs四足核壳量子点氢杂质非线性光学整流的机器学习模型
在本研究中,我们利用紧致密度矩阵的形式,研究了温度影响下GaAs/AlGaAs四足核壳量子点(TCSQDs)第一态和激发态之间的非线性光学整流(NOR)。在有效质量近似(EMA)的框架内,用有限元法求解Schrödinger方程,计算了能级和波函数。本研究的目的是在考虑温度变化对量子点系统的影响的情况下,建立一种准确有效的方法来模拟和预测与E23跃迁相关的NOR系数。为了实现这一目标,我们应用了一系列机器学习(ML)算法,包括人工神经网络(ANN)、决策树(DT)和随机森林回归(RFR)。其中,随机森林回归在室温下表现最佳,R2 = 0.99940, MSE = 1.10 × 10-4, MAE = 0.00510。这项工作的重要性在于,它有可能为设计先进的基于量子点的光电器件(如红外探测器和光子元件)提供有价值的见解,在这些器件中,依赖温度的NOR是性能优化的关键属性。此外,机器学习技术在这方面的应用为复杂量子系统的高效和准确建模提供了一种有前途的方法,促进了未来量子技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信