Kuijun Wu , Lingyun Gao , Zhao Feng , Ioannis Kakkos , Chuantao Li , Yu Sun
{"title":"Multimodal brain network analysis reveals divergent dysconnectivity patterns during mental fatigue: A concurrent EEG-fMRI study","authors":"Kuijun Wu , Lingyun Gao , Zhao Feng , Ioannis Kakkos , Chuantao Li , Yu Sun","doi":"10.1016/j.brainresbull.2025.111505","DOIUrl":null,"url":null,"abstract":"<div><div>For the apparent importance of mental fatigue in neuroergonomics, continuous efforts have been made to reveal the underlying neural mechanisms. Using concurrent EEG-fMRI network analysis, this work aims to reveal fatigue-related brain network reorganization. Specifically, multimodal neuroimaging data were acquired from 35 healthy participants during a 15-min sustained attention task (i.e., psychomotor vigilance task). A monotonically decreasing pattern of behavioral performance was revealed where the first and last 3-min windows were determined as the most vigilant and fatigued states. Multimodal brain network architectures within these two states were then quantitatively compared. We found that EEG and fMRI networks exhibited divergent yet interrelated reorganizations. Specifically, MF-related deficiency in parallel information transmission was revealed in multiple EEG frequency bands, yet only local efficiency was altered in fMRI networks. Moreover, a convergent decrease of nodal efficiency mainly resided in the default mode network was found in both EEG and fMRI networks, indicating a decline in cognitive control capacity during mental fatigue. Overall, by integrating multimodal EEG-fMRI network analyses, this work provides novel insights into the dynamic neural adaptations to mental fatigue, enhancing our understanding of the underlying neural mechanisms.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"230 ","pages":"Article 111505"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036192302500317X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
For the apparent importance of mental fatigue in neuroergonomics, continuous efforts have been made to reveal the underlying neural mechanisms. Using concurrent EEG-fMRI network analysis, this work aims to reveal fatigue-related brain network reorganization. Specifically, multimodal neuroimaging data were acquired from 35 healthy participants during a 15-min sustained attention task (i.e., psychomotor vigilance task). A monotonically decreasing pattern of behavioral performance was revealed where the first and last 3-min windows were determined as the most vigilant and fatigued states. Multimodal brain network architectures within these two states were then quantitatively compared. We found that EEG and fMRI networks exhibited divergent yet interrelated reorganizations. Specifically, MF-related deficiency in parallel information transmission was revealed in multiple EEG frequency bands, yet only local efficiency was altered in fMRI networks. Moreover, a convergent decrease of nodal efficiency mainly resided in the default mode network was found in both EEG and fMRI networks, indicating a decline in cognitive control capacity during mental fatigue. Overall, by integrating multimodal EEG-fMRI network analyses, this work provides novel insights into the dynamic neural adaptations to mental fatigue, enhancing our understanding of the underlying neural mechanisms.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.