Maximizing the spectral radius of graphs of given size with a forbidden subgraph

IF 1.1 3区 数学 Q1 MATHEMATICS
Yanting Zhang , Ligong Wang
{"title":"Maximizing the spectral radius of graphs of given size with a forbidden subgraph","authors":"Yanting Zhang ,&nbsp;Ligong Wang","doi":"10.1016/j.laa.2025.07.032","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>7</mn></mrow></msub></math></span> denote the 7-vertex <em>fan graph</em> consisting of a 6-vertex path plus a vertex adjacent to each vertex of the path. Let <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>∨</mo><mfrac><mrow><mi>m</mi><mo>−</mo><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> be the graph obtained by joining each vertex of a triangle <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> to <span><math><mfrac><mrow><mi>m</mi><mo>−</mo><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> isolated vertices. In this paper, we show that if <em>G</em> is an <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>7</mn></mrow></msub></math></span>-free graph with size <span><math><mi>m</mi><mo>≥</mo><mn>33</mn></math></span>, then the spectral radius <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>1</mn><mo>+</mo><msqrt><mrow><mi>m</mi><mo>−</mo><mn>2</mn></mrow></msqrt></math></span>, equality holds if and only if <span><math><mi>G</mi><mo>≅</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>∨</mo><mfrac><mrow><mi>m</mi><mo>−</mo><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> (possibly, with some isolated vertices).</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"727 ","pages":"Pages 10-23"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003301","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let H7 denote the 7-vertex fan graph consisting of a 6-vertex path plus a vertex adjacent to each vertex of the path. Let K3m33K1 be the graph obtained by joining each vertex of a triangle K3 to m33 isolated vertices. In this paper, we show that if G is an H7-free graph with size m33, then the spectral radius ρ(G)1+m2, equality holds if and only if GK3m33K1 (possibly, with some isolated vertices).
用禁止子图最大化给定大小的图的谱半径
设H7为7顶点扇形图,该扇形图由一条6顶点路径加上与该路径每个顶点相邻的一个顶点组成。设K3∨m−33K1为三角形K3的每个顶点与m−33个孤立顶点相连接得到的图。本文证明了如果G是大小为m≥33的无h7图,则谱半径ρ(G)≤1+m−2,当且仅当G≠K3∨m−33K1(可能有孤立顶点)成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信