A new perspective on WO3: Bridging ultrafast terahertz spectroscopy and photoelectrochemical characterization

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Krzysztof Bieńkowski , Kamil Polok , Marcin Strawski , Piotr Wróbel , Aleksandra Parzuch , Renata Solarska , Bożena Gadomska , Wojciech Gadomski
{"title":"A new perspective on WO3: Bridging ultrafast terahertz spectroscopy and photoelectrochemical characterization","authors":"Krzysztof Bieńkowski ,&nbsp;Kamil Polok ,&nbsp;Marcin Strawski ,&nbsp;Piotr Wróbel ,&nbsp;Aleksandra Parzuch ,&nbsp;Renata Solarska ,&nbsp;Bożena Gadomska ,&nbsp;Wojciech Gadomski","doi":"10.1016/j.mtphys.2025.101820","DOIUrl":null,"url":null,"abstract":"<div><div>The efficient conversion of solar energy into chemical fuel remains a critical challenge in renewable energy research. Photoelectrochemical cells (PECs) offer a promising route by directly using sunlight to drive water splitting. However, their widespread implementation is limited by the insufficient efficiency and stability of available semiconductor materials. Rapid discovery and optimization of high performance PEC photoelectrodes require advanced screening methods capable of providing deep insights into charge transport, carrier dynamics and interfacial processes. Herein we propose a novel characterization strategy that integrates optical pump terahertz probe (OPTP) spectroscopy with electrochemical impedance spectroscopy (EIS) to investigate structure–property relationships in WO<sub>3</sub> thin films. By employing silicon substrates to simulate semiconductor depletion layers, we establish a new approach for bridging <em>in situ</em> electrochemical techniques with <em>ex situ</em> time-resolved THz spectroscopy, leading to a more comprehensive understanding of the PEC relevant properties. Our methodology allows the rapid evaluation of charge-carrier dynamics, transport efficiency and interfacial charge transfer processes, providing critical insights into material performance. Using WO<sub>3</sub> as a well established system, we demonstrate that synthesis temperature plays a pivotal role in shaping the morphology, crystallinity and electronic properties of the films. A significant increase in photocurrent and charge-carrier mobility is observed for WO<sub>3</sub> annealed at 700 °C, which is attributed to enhanced crystallization and reduced charge recombination. Additionally, a conductive interfacial layer, identified through independent X-ray photoelectron spectroscopy (XPS) and EIS measurements, further influences charge transport behavior. Moreover, the results highlight the intricate relationship between processing conditions, electronic structure and PEC efficiency, offering new perspectives for designing optimized photoelectrodes. In this study we propose a high throughput, AI compatible framework for PEC material screening, leveraging OPTP spectroscopy as a rapid, non-destructive technique for evaluating carrier dynamics. The proposed methodology may not only accelerate the discovery of next generation PEC materials but also of fundamental insights into semiconductor–electrolyte interactions, paving the way for more efficient and stable PEC devices.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"57 ","pages":"Article 101820"},"PeriodicalIF":9.7000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325001762","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The efficient conversion of solar energy into chemical fuel remains a critical challenge in renewable energy research. Photoelectrochemical cells (PECs) offer a promising route by directly using sunlight to drive water splitting. However, their widespread implementation is limited by the insufficient efficiency and stability of available semiconductor materials. Rapid discovery and optimization of high performance PEC photoelectrodes require advanced screening methods capable of providing deep insights into charge transport, carrier dynamics and interfacial processes. Herein we propose a novel characterization strategy that integrates optical pump terahertz probe (OPTP) spectroscopy with electrochemical impedance spectroscopy (EIS) to investigate structure–property relationships in WO3 thin films. By employing silicon substrates to simulate semiconductor depletion layers, we establish a new approach for bridging in situ electrochemical techniques with ex situ time-resolved THz spectroscopy, leading to a more comprehensive understanding of the PEC relevant properties. Our methodology allows the rapid evaluation of charge-carrier dynamics, transport efficiency and interfacial charge transfer processes, providing critical insights into material performance. Using WO3 as a well established system, we demonstrate that synthesis temperature plays a pivotal role in shaping the morphology, crystallinity and electronic properties of the films. A significant increase in photocurrent and charge-carrier mobility is observed for WO3 annealed at 700 °C, which is attributed to enhanced crystallization and reduced charge recombination. Additionally, a conductive interfacial layer, identified through independent X-ray photoelectron spectroscopy (XPS) and EIS measurements, further influences charge transport behavior. Moreover, the results highlight the intricate relationship between processing conditions, electronic structure and PEC efficiency, offering new perspectives for designing optimized photoelectrodes. In this study we propose a high throughput, AI compatible framework for PEC material screening, leveraging OPTP spectroscopy as a rapid, non-destructive technique for evaluating carrier dynamics. The proposed methodology may not only accelerate the discovery of next generation PEC materials but also of fundamental insights into semiconductor–electrolyte interactions, paving the way for more efficient and stable PEC devices.
WO3的新视角:桥接超快太赫兹光谱与光电化学表征
将太阳能有效地转化为化学燃料仍然是可再生能源研究中的一个关键挑战。光电化学电池(PECs)提供了一条很有前途的途径,即直接利用阳光驱动水分解。然而,它们的广泛实施受到现有半导体材料效率和稳定性不足的限制。快速发现和优化高性能PEC光电极需要先进的筛选方法,能够深入了解电荷传输,载流子动力学和界面过程。在此,我们提出了一种新的表征策略,将光泵太赫兹探针(OPTP)光谱与电化学阻抗光谱(EIS)相结合,研究WO3薄膜的结构-性能关系。通过使用硅衬底模拟半导体耗尽层,我们建立了一种将原位电化学技术与非原位时间分辨太赫兹光谱桥接的新方法,从而更全面地了解PEC相关性质。我们的方法允许快速评估电荷载流子动力学,传输效率和界面电荷转移过程,为材料性能提供关键见解。利用WO3作为一个完善的体系,我们证明了合成温度对薄膜的形貌、结晶度和电子性能起着关键作用。在700°C退火的WO3中,光电流和载流子迁移率显著增加,这是由于结晶增强和电荷复合减少。此外,通过独立的x射线光电子能谱(XPS)和EIS测量确定的导电界面层进一步影响电荷传输行为。此外,研究结果强调了加工条件、电子结构和光电效率之间的复杂关系,为设计优化的光电电极提供了新的视角。在这项研究中,我们提出了一种高通量、人工智能兼容的PEC材料筛选框架,利用OPTP光谱作为一种快速、非破坏性的技术来评估载流子动力学。所提出的方法不仅可以加速下一代PEC材料的发现,而且可以对半导体-电解质相互作用的基本见解,为更高效和稳定的PEC设备铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信