Quanlong Liu, Yanxia Zhang, Runjie Wang, Xiurong Feng, Lei Zhang, Yan Liu, Zhehong Tang, Fei Guo, Jieyu Chen, Yuchen Ye, Yunpeng Zhou
{"title":"Intercalation strategy induced superior energy storage performance in Aurivillius Bi6Ti3FeAlO18 film under low and medium electric fields","authors":"Quanlong Liu, Yanxia Zhang, Runjie Wang, Xiurong Feng, Lei Zhang, Yan Liu, Zhehong Tang, Fei Guo, Jieyu Chen, Yuchen Ye, Yunpeng Zhou","doi":"10.1016/j.jmat.2025.101113","DOIUrl":null,"url":null,"abstract":"A new type of lead-free dielectric film capacitor with high energy density and rapid charge-discharge performance under a low and medium applied electric field is essential for electrical and electronic systems. Herein, we propose an efficient and straightforward approach to enhance the energy storage performance of the Aurivillius Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> film through intercalation strategy. The insertion of BiAlO<sub>3</sub> units, which have a weak domain-forming potential, into the Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> matrix establishes an ergodic relaxor. This modification further increases the difference between the maximum polarization and the remanent polarization. Under 1500 kV/cm, the Bi<sub>6</sub>Ti<sub>3</sub>FeAlO<sub>18</sub> film exhibits an excellent energy storage density of 67.5 J/cm<sup>3</sup>, along with a high energy storage efficiency of 75.5%. This leads to an exceptionally high energy storage response coefficient, which surpasses those of most dielectric films. Furthermore, the Bi<sub>6</sub>Ti<sub>3</sub>FeAlO<sub>18</sub> film exhibits outstanding thermal stability within a temperature range of –30 °C to 150 °C, commendable frequency stability from 0.05 kHz to 20.00 kHz, and remarkable fatigue resistance after 1 × 10<sup>8</sup> cycles. This study investigates a potential lead-free material suitable for low-electric-field-driven capacitors and also lays a foundation for developing Aurivillius-type lead-free high-energy-storage applications at low and medium electric fields through intercalation strategy.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"9 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2025.101113","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A new type of lead-free dielectric film capacitor with high energy density and rapid charge-discharge performance under a low and medium applied electric field is essential for electrical and electronic systems. Herein, we propose an efficient and straightforward approach to enhance the energy storage performance of the Aurivillius Bi5Ti3FeO15 film through intercalation strategy. The insertion of BiAlO3 units, which have a weak domain-forming potential, into the Bi5Ti3FeO15 matrix establishes an ergodic relaxor. This modification further increases the difference between the maximum polarization and the remanent polarization. Under 1500 kV/cm, the Bi6Ti3FeAlO18 film exhibits an excellent energy storage density of 67.5 J/cm3, along with a high energy storage efficiency of 75.5%. This leads to an exceptionally high energy storage response coefficient, which surpasses those of most dielectric films. Furthermore, the Bi6Ti3FeAlO18 film exhibits outstanding thermal stability within a temperature range of –30 °C to 150 °C, commendable frequency stability from 0.05 kHz to 20.00 kHz, and remarkable fatigue resistance after 1 × 108 cycles. This study investigates a potential lead-free material suitable for low-electric-field-driven capacitors and also lays a foundation for developing Aurivillius-type lead-free high-energy-storage applications at low and medium electric fields through intercalation strategy.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.