Data-Driven Distributed Fault Detection and Fault-Tolerant Control for Large-Scale Systems: A Subspace Predictor-Assisted Integrated Design Scheme.

IF 10.5 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Biao Li,Wenlong Li,Ying Yang
{"title":"Data-Driven Distributed Fault Detection and Fault-Tolerant Control for Large-Scale Systems: A Subspace Predictor-Assisted Integrated Design Scheme.","authors":"Biao Li,Wenlong Li,Ying Yang","doi":"10.1109/tcyb.2025.3589937","DOIUrl":null,"url":null,"abstract":"Considering the influence of subsystem state interconnection in large-scale systems, the existing integrated design methods of data-driven fault detection (FD) and fault-tolerant control (FTC) that follow centralized architecture cannot be applied in distributed scenarios. To address this problem, this article proposes a subspace predictor-assisted framework to perform the data-driven integrated design of FD and FTC for large-scale systems. FD and FTC are organically combined through a subspace predictor framework. For the subspace predictor designed for each subsystem, no global input and output (I/O) data information is required but only the I/O data of the local and neighboring subsystems is used, thus realizing a distributed design. In addition, the integrated architecture of FD and FTC does not need any large-scale system mechanism information, and is completely driven by process I/O data. Two case studies including a numerical simulation example and cascaded CSTR verify the feasibility and effectiveness of the proposed data-driven distributed FD and FTC method.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"11 1","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tcyb.2025.3589937","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Considering the influence of subsystem state interconnection in large-scale systems, the existing integrated design methods of data-driven fault detection (FD) and fault-tolerant control (FTC) that follow centralized architecture cannot be applied in distributed scenarios. To address this problem, this article proposes a subspace predictor-assisted framework to perform the data-driven integrated design of FD and FTC for large-scale systems. FD and FTC are organically combined through a subspace predictor framework. For the subspace predictor designed for each subsystem, no global input and output (I/O) data information is required but only the I/O data of the local and neighboring subsystems is used, thus realizing a distributed design. In addition, the integrated architecture of FD and FTC does not need any large-scale system mechanism information, and is completely driven by process I/O data. Two case studies including a numerical simulation example and cascaded CSTR verify the feasibility and effectiveness of the proposed data-driven distributed FD and FTC method.
大规模系统的数据驱动分布式故障检测与容错控制:一种子空间预测辅助集成设计方案。
考虑到大型系统中子系统状态互联的影响,现有的集中式架构的数据驱动故障检测(FD)和容错控制(FTC)集成设计方法无法应用于分布式场景。为了解决这一问题,本文提出了一种子空间预测辅助框架,用于大规模系统的FD和FTC的数据驱动集成设计。FD和FTC通过子空间预测框架有机地结合在一起。为每个子系统设计的子空间预测器不需要全局I/O数据信息,只使用本地和邻近子系统的I/O数据,实现了分布式设计。此外,FD和FTC的集成架构不需要任何大规模的系统机制信息,完全由进程I/O数据驱动。包括数值模拟示例和级联CSTR在内的两个案例研究验证了所提出的数据驱动分布式FD和FTC方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信