{"title":"Mechanistic Insights into Astragalus Membranaceus for Oral Submucosal Fibrosis: A Network Pharmacology and Experimental Approach.","authors":"Fang Zhang, Yonglian Wu, Chen Cheng, YaHsin Cheng, Ruifang Gao","doi":"10.2174/0113816128374420250707120128","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Oral Submucosal Fibrosis (OSF) is a chronic progressive oral mucosal disease with a tendency to progress to cancer. Astragalus membranaceus (AST) is a traditional Chinese medicine used to invigorate Qi and strengthen the body, with anti-fibrosis properties. However, the effect and mechanism of AST on OSF remain unclear.</p><p><strong>Objective: </strong>This study aims to explore the mechanism of Astragalus membranaceus in OSF using network pharmacology and to validate its effects on oral mucosal fibroblasts through in-vitro experiments.</p><p><strong>Methods: </strong>Network pharmacology was employed to construct an \"AST - ingredient - target - OSF\" network and perform Protein-Protein Interaction (PPI) analysis. Molecular docking was used to confirm core interactions between key targets and ingredients, and all results met the criterion of a binding energy of <- -1.2 kcal/mol. In-vitro experiments were conducted to assess the cytotoxicity of arecoline (ARE) and Astragalus membranaceus injection (ASI) on Oral Mucosal Fibroblasts (OMF).</p><p><strong>Results: </strong>Analysis revealed 68 common targets between AST and OSF, and a corresponding PPI network was constructed. KEGG and GO enrichment analyses identified 138 pathways and 178 biological processes associated with these targets. Molecular docking confirmed core interactions between five key targets (EGFR, VEGFA, MAPK3, HRAS, JUN) and other ingredients. In-vitro experiments showed that ARE at concentrations of 20-40 μg/ml significantly upregulated ACTA2, EGFR, and VEGFA mRNA expression. ASI treatment at varying concentrations significantly inhibited these increases, with 100 mg/ml ASI downregulating EGFR and VEGFA mRNA, and 300-400 mg/ml ASI reducing ACTA2 expression.</p><p><strong>Conclusion: </strong>Astragalus membranaceus injection may suppress ARE-induced fibrosis by targeting EGFR and VEGFA, supporting its potential therapeutic role in the treatment of OSF.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128374420250707120128","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Oral Submucosal Fibrosis (OSF) is a chronic progressive oral mucosal disease with a tendency to progress to cancer. Astragalus membranaceus (AST) is a traditional Chinese medicine used to invigorate Qi and strengthen the body, with anti-fibrosis properties. However, the effect and mechanism of AST on OSF remain unclear.
Objective: This study aims to explore the mechanism of Astragalus membranaceus in OSF using network pharmacology and to validate its effects on oral mucosal fibroblasts through in-vitro experiments.
Methods: Network pharmacology was employed to construct an "AST - ingredient - target - OSF" network and perform Protein-Protein Interaction (PPI) analysis. Molecular docking was used to confirm core interactions between key targets and ingredients, and all results met the criterion of a binding energy of <- -1.2 kcal/mol. In-vitro experiments were conducted to assess the cytotoxicity of arecoline (ARE) and Astragalus membranaceus injection (ASI) on Oral Mucosal Fibroblasts (OMF).
Results: Analysis revealed 68 common targets between AST and OSF, and a corresponding PPI network was constructed. KEGG and GO enrichment analyses identified 138 pathways and 178 biological processes associated with these targets. Molecular docking confirmed core interactions between five key targets (EGFR, VEGFA, MAPK3, HRAS, JUN) and other ingredients. In-vitro experiments showed that ARE at concentrations of 20-40 μg/ml significantly upregulated ACTA2, EGFR, and VEGFA mRNA expression. ASI treatment at varying concentrations significantly inhibited these increases, with 100 mg/ml ASI downregulating EGFR and VEGFA mRNA, and 300-400 mg/ml ASI reducing ACTA2 expression.
Conclusion: Astragalus membranaceus injection may suppress ARE-induced fibrosis by targeting EGFR and VEGFA, supporting its potential therapeutic role in the treatment of OSF.
期刊介绍:
Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.