A RRAM-Based CIM Design With in-Situ Transposable Computing and Hybrid-Precision Scheme for Edge Learning

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Qiumeng Wei;Peng Yao;Dong Wu;Qi Qin;Bin Gao;Qingtian Zhang;Sining Pan;Jianshi Tang;He Qian;Lu Jie;Huaqiang Wu
{"title":"A RRAM-Based CIM Design With in-Situ Transposable Computing and Hybrid-Precision Scheme for Edge Learning","authors":"Qiumeng Wei;Peng Yao;Dong Wu;Qi Qin;Bin Gao;Qingtian Zhang;Sining Pan;Jianshi Tang;He Qian;Lu Jie;Huaqiang Wu","doi":"10.1109/LSSC.2025.3589580","DOIUrl":null,"url":null,"abstract":"Edge computing devices demand efficient transposable computing architectures to enable on-chip learning, necessitating novel hardware designs that balance performance and flexibility. We present an RRAM-based compute-in-memory macro capable of supporting both in-situ forward and backward propagation operations. The design incorporates an orthogonal-WL array structure with weight-level parallelism adjustment and a precision-driven input mechanism to enable flexible transposable computing. Additionally, optimized ADCs provide high throughput while maintaining area efficiency. The work exhibits a SOTA normalized area efficiency of 126.7 TOPS/mm2/bit, an energy efficiency of 2348.96 TOPS/W/bit, and a storage density of 4.84 Mb/mm2.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"205-208"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11082282/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Edge computing devices demand efficient transposable computing architectures to enable on-chip learning, necessitating novel hardware designs that balance performance and flexibility. We present an RRAM-based compute-in-memory macro capable of supporting both in-situ forward and backward propagation operations. The design incorporates an orthogonal-WL array structure with weight-level parallelism adjustment and a precision-driven input mechanism to enable flexible transposable computing. Additionally, optimized ADCs provide high throughput while maintaining area efficiency. The work exhibits a SOTA normalized area efficiency of 126.7 TOPS/mm2/bit, an energy efficiency of 2348.96 TOPS/W/bit, and a storage density of 4.84 Mb/mm2.
一种基于rram的基于原位可转置计算和混合精度的边缘学习CIM设计
边缘计算设备需要高效的可转置计算架构来实现片上学习,这就需要新颖的硬件设计来平衡性能和灵活性。我们提出了一个基于rram的内存中计算宏,能够支持原位正向和反向传播操作。该设计结合了具有重量级并行调整的正交wl阵列结构和精度驱动的输入机制,以实现灵活的转座计算。此外,优化的adc在保持区域效率的同时提供高吞吐量。SOTA归一化面积效率为126.7 TOPS/mm2/bit,能量效率为2348.96 TOPS/W/bit,存储密度为4.84 Mb/mm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Solid-State Circuits Letters
IEEE Solid-State Circuits Letters Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
3.70%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信