Tunneling Field Effect Transistors Based on Janus Monolayer PtSSe

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Masoud Berahman;Hamidreza Aghasi
{"title":"Tunneling Field Effect Transistors Based on Janus Monolayer PtSSe","authors":"Masoud Berahman;Hamidreza Aghasi","doi":"10.1109/TNANO.2025.3589902","DOIUrl":null,"url":null,"abstract":"This work explores the electronic transport properties of a double-gated tunneling field effect transistor (TFET) based on Janus monolayer PtSSe. Janus PtSSe, with its unique asymmetrical structure and inherent built-in electric polarization, offers exceptional electronic properties such as a tunable bandgap and high carrier mobility, making it a promising candidate for next-generation electronic devices. Using density functional theory (DFT) and non-equilibrium Green’s function (NEGF) calculations, the performance of the PtSSe-based TFET is evaluated, demonstrating a low subthreshold swing as low as 19 mV/dec and an I<sub>on</sub>/I<sub>off</sub> ratio as high as <inline-formula><tex-math>$1.64 \\times 10^{8}$</tex-math></inline-formula>, and a maximum operating frequency of 0.88 THz depending achieved through optimization of doping concentration. The study also investigates the impact of spin-orbit coupling on the material’s electronic properties, offering insights for further optimization. These findings establish Janus PtSSe as a promising material for addressing the limitations of conventional silicon-based FETs and advancing nanoscale electronics by enabling high-performance, low-power devices.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"369-377"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11082011/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This work explores the electronic transport properties of a double-gated tunneling field effect transistor (TFET) based on Janus monolayer PtSSe. Janus PtSSe, with its unique asymmetrical structure and inherent built-in electric polarization, offers exceptional electronic properties such as a tunable bandgap and high carrier mobility, making it a promising candidate for next-generation electronic devices. Using density functional theory (DFT) and non-equilibrium Green’s function (NEGF) calculations, the performance of the PtSSe-based TFET is evaluated, demonstrating a low subthreshold swing as low as 19 mV/dec and an Ion/Ioff ratio as high as $1.64 \times 10^{8}$, and a maximum operating frequency of 0.88 THz depending achieved through optimization of doping concentration. The study also investigates the impact of spin-orbit coupling on the material’s electronic properties, offering insights for further optimization. These findings establish Janus PtSSe as a promising material for addressing the limitations of conventional silicon-based FETs and advancing nanoscale electronics by enabling high-performance, low-power devices.
基于Janus单层PtSSe的隧道场效应晶体管
本文研究了基于Janus单层PtSSe的双门隧穿场效应晶体管(TFET)的电子输运特性。Janus PtSSe具有独特的不对称结构和固有的内置电极化,具有可调的带隙和高载流子迁移率等卓越的电子性能,使其成为下一代电子器件的有希望的候选者。利用密度泛函理论(DFT)和非平衡格林函数(NEGF)计算,对基于ptsse的TFET的性能进行了评估,显示出低亚阈值摆幅低至19 mV/dec,离子/Ioff比高达1.64 \ × 10^{8}$,最大工作频率为0.88 THz,这取决于掺杂浓度的优化。该研究还研究了自旋轨道耦合对材料电子性能的影响,为进一步优化提供了见解。这些发现使Janus PtSSe成为一种很有前途的材料,可以解决传统硅基fet的局限性,并通过实现高性能、低功耗器件来推进纳米级电子学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信