Establishment of a CRISPR/Cas12b-Based Multiple Cross Displacement Amplification Assay for the Rapid, Sensitive, and Specific Detection of Brucella ovis.
Yue Zhang, Xinggui Yang, Yue Wang, Fengming Chen, Ying Liu, Hai Jiang, Yi Wang, Yong Hu, Shijun Li
{"title":"Establishment of a CRISPR/Cas12b-Based Multiple Cross Displacement Amplification Assay for the Rapid, Sensitive, and Specific Detection of <i>Brucella ovis</i>.","authors":"Yue Zhang, Xinggui Yang, Yue Wang, Fengming Chen, Ying Liu, Hai Jiang, Yi Wang, Yong Hu, Shijun Li","doi":"10.1021/acsinfecdis.5c00287","DOIUrl":null,"url":null,"abstract":"<p><p><i>Brucella ovis</i> (<i>B. ovis</i>), a major pathogenic species within the <i>Brucella</i> genus, causes ovine epididymitis. Although the isolation and identification of <i>B. ovis</i> remain the gold standard for diagnosis, these methods are unsuitable for early detection. The traditional polymerase chain reaction (PCR) offers faster detection but requires specialized equipment such as PCR thermal cyclers and gel electrophoresis imagers, limiting its use in basic laboratories. Thus, developing rapid, sensitive, and specific diagnostic strategies is vital for preventing and controlling the spread of ovine brucellosis. In this study, we developed a diagnostic assay combining clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12b with multiple cross displacement amplification (MCDA)─termed CRISPR/Cas12b-MCDA─for rapid, sensitive, and specific identification of <i>B. ovis</i>. In the CRISPR/Cas12b-MCDA system, MCDA amplicons containing protospacer adjacent motif (PAM) sites are recognized by the Cas12b/gRNA complex, which binds the target region and triggers <i>trans</i>-cleavage of a single-stranded DNA (ssDNA) reporter. The CRISPR/Cas12b-MCDA assay demonstrated a detection limit of 10 fg/μL for synthetic genomic DNA and exhibited 100% specificity for <i>B. ovis</i>, with no cross-reactivity against other <i>Brucella</i> or non-<i>Brucella</i> species. The preamplification for template extraction takes 20 min, then 5 min for uracil DNA glycosylase (UDG) digestion, and 45 min for MCDA amplification. The total detection time was 75 min using real-time fluorescence analysis and 90 min with a lateral flow biosensor (LFB). Additionally, the results were validated using UV visualization to confirm the CRISPR/Cas12b-MCDA results. Notably, both LFB and UV analyses are instrument-free, enhancing their accessibility. In conclusion, the CRISPR/Cas12b-MCDA assay is a simple, rapid, sensitive, specific, and reliable method for detecting <i>B. ovis</i>.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.5c00287","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Brucella ovis (B. ovis), a major pathogenic species within the Brucella genus, causes ovine epididymitis. Although the isolation and identification of B. ovis remain the gold standard for diagnosis, these methods are unsuitable for early detection. The traditional polymerase chain reaction (PCR) offers faster detection but requires specialized equipment such as PCR thermal cyclers and gel electrophoresis imagers, limiting its use in basic laboratories. Thus, developing rapid, sensitive, and specific diagnostic strategies is vital for preventing and controlling the spread of ovine brucellosis. In this study, we developed a diagnostic assay combining clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12b with multiple cross displacement amplification (MCDA)─termed CRISPR/Cas12b-MCDA─for rapid, sensitive, and specific identification of B. ovis. In the CRISPR/Cas12b-MCDA system, MCDA amplicons containing protospacer adjacent motif (PAM) sites are recognized by the Cas12b/gRNA complex, which binds the target region and triggers trans-cleavage of a single-stranded DNA (ssDNA) reporter. The CRISPR/Cas12b-MCDA assay demonstrated a detection limit of 10 fg/μL for synthetic genomic DNA and exhibited 100% specificity for B. ovis, with no cross-reactivity against other Brucella or non-Brucella species. The preamplification for template extraction takes 20 min, then 5 min for uracil DNA glycosylase (UDG) digestion, and 45 min for MCDA amplification. The total detection time was 75 min using real-time fluorescence analysis and 90 min with a lateral flow biosensor (LFB). Additionally, the results were validated using UV visualization to confirm the CRISPR/Cas12b-MCDA results. Notably, both LFB and UV analyses are instrument-free, enhancing their accessibility. In conclusion, the CRISPR/Cas12b-MCDA assay is a simple, rapid, sensitive, specific, and reliable method for detecting B. ovis.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.