Cross-market volatility forecasting with attention-based spatial–temporal graph convolutional networks

IF 2.4 2区 经济学 Q2 BUSINESS, FINANCE
Jue Gong, Gang-Jin Wang, Yang Zhou, Chi Xie
{"title":"Cross-market volatility forecasting with attention-based spatial–temporal graph convolutional networks","authors":"Jue Gong,&nbsp;Gang-Jin Wang,&nbsp;Yang Zhou,&nbsp;Chi Xie","doi":"10.1016/j.jempfin.2025.101639","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a cross-market volatility forecasting framework by applying attention-based spatial–temporal graph convolutional network model (ASTGCN) to forecast future volatility of stock indices in 18 financial markets. In our work, we construct cross-market volatility networks to integrate interrelations among financial markets and the corresponding features of each market. ASTGCN combines the spatial–temporal attention mechanisms with the spatial–temporal convolutions to simultaneously capture the dynamic spatial–temporal characteristics of global volatility data. Compared with competitive models, ASTGCN exhibits superiority in multivariate predictive accuracies under multiple forecasting horizons. Our proposed framework demonstrates outstanding stability through several robustness checks. We also inspect the training process of ASTGCN by extracting spatial attention matrices and find that interrelations among global financial markets perform differently in tranquil and turmoil periods. Our study levitates empirical findings in financial networks to practical application with a novel forecasting method in the deep learning community.</div></div>","PeriodicalId":15704,"journal":{"name":"Journal of Empirical Finance","volume":"83 ","pages":"Article 101639"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Empirical Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927539825000611","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a cross-market volatility forecasting framework by applying attention-based spatial–temporal graph convolutional network model (ASTGCN) to forecast future volatility of stock indices in 18 financial markets. In our work, we construct cross-market volatility networks to integrate interrelations among financial markets and the corresponding features of each market. ASTGCN combines the spatial–temporal attention mechanisms with the spatial–temporal convolutions to simultaneously capture the dynamic spatial–temporal characteristics of global volatility data. Compared with competitive models, ASTGCN exhibits superiority in multivariate predictive accuracies under multiple forecasting horizons. Our proposed framework demonstrates outstanding stability through several robustness checks. We also inspect the training process of ASTGCN by extracting spatial attention matrices and find that interrelations among global financial markets perform differently in tranquil and turmoil periods. Our study levitates empirical findings in financial networks to practical application with a novel forecasting method in the deep learning community.
基于注意力的时空图卷积网络跨市场波动预测
本文运用基于注意力的时空图卷积网络模型(ASTGCN)对18个金融市场股票指数的未来波动率进行预测,提出了一个跨市场波动率预测框架。在我们的工作中,我们构建了跨市场波动网络来整合金融市场之间的相互关系以及每个市场的相应特征。ASTGCN将时空注意机制与时空卷积相结合,同时捕捉全球波动率数据的动态时空特征。与竞争模型相比,ASTGCN在多预测视野下的多元预测精度方面具有优势。我们提出的框架通过几个鲁棒性检查证明了出色的稳定性。我们还通过提取空间注意力矩阵来检验ASTGCN的训练过程,发现全球金融市场之间的相互关系在平静和动荡时期表现不同。我们的研究将金融网络的实证研究结果与深度学习领域的一种新的预测方法结合起来应用于实际。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
3.80%
发文量
59
期刊介绍: The Journal of Empirical Finance is a financial economics journal whose aim is to publish high quality articles in empirical finance. Empirical finance is interpreted broadly to include any type of empirical work in financial economics, financial econometrics, and also theoretical work with clear empirical implications, even when there is no empirical analysis. The Journal welcomes articles in all fields of finance, such as asset pricing, corporate finance, financial econometrics, banking, international finance, microstructure, behavioural finance, etc. The Editorial Team is willing to take risks on innovative research, controversial papers, and unusual approaches. We are also particularly interested in work produced by young scholars. The composition of the editorial board reflects such goals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信