{"title":"Digital Low-Dropout Regulator-Assisted Buck DC-DC Converter Achieving 68-mV Droop Voltage and 95.5% Efficiency","authors":"Yichen Xu;Zhaoqing Wang;Rentao Wan;Suhwan Kim;Minxiang Gong;Ram Krishnamurthy;Xin Zhang;Mingoo Seok","doi":"10.1109/LSSC.2025.3581844","DOIUrl":null,"url":null,"abstract":"This letter proposes a digital low-dropout regulator (DLDO)-assisted buck converter featuring one-step computational droop compensation and DLDO feedback-controlled current handover. The 28-nm test chip achieves a 68-mV droop voltage and a 112-ns settling time for a 1A/0.8ns load step while maintaining a high-peak efficiency of 95.5%.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"193-196"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11045767/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This letter proposes a digital low-dropout regulator (DLDO)-assisted buck converter featuring one-step computational droop compensation and DLDO feedback-controlled current handover. The 28-nm test chip achieves a 68-mV droop voltage and a 112-ns settling time for a 1A/0.8ns load step while maintaining a high-peak efficiency of 95.5%.