Observation of short-range order in refractory high-entropy alloys from atomic-positions deviation using STEM and atomistic simulations

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chia-Yi Wu , George Kim , Yuan-Wei Chang , Chenyang Li , Juntan Li , Haixuan Xu , Chanho Lee , Peter K. Liaw , Wei Chen , Yi-Chia Chou
{"title":"Observation of short-range order in refractory high-entropy alloys from atomic-positions deviation using STEM and atomistic simulations","authors":"Chia-Yi Wu ,&nbsp;George Kim ,&nbsp;Yuan-Wei Chang ,&nbsp;Chenyang Li ,&nbsp;Juntan Li ,&nbsp;Haixuan Xu ,&nbsp;Chanho Lee ,&nbsp;Peter K. Liaw ,&nbsp;Wei Chen ,&nbsp;Yi-Chia Chou","doi":"10.1016/j.mtphys.2025.101796","DOIUrl":null,"url":null,"abstract":"<div><div>Chemical short-range order (SRO) has an intriguing relationship with the mechanical properties in solid-solution alloys. Here, we report experimentally observed SRO and atomic-level quantification of lattice distortions in the NbTaTiV and NbTaTiVZr refractory high-entropy alloys (RHEA), using atomic-resolution scanning transmission electron microscopy (STEM) coupled with atomistic simulations. Combination of atomic position and intensity analysis estimate the relationship between atomic bonds and SRO, indicating the bonding preference of Ta-V, Ti-V, Ti-Zr, and Nb-Ta. The non-randomness of interatomic distances and significant deviation in the predicted value of lattice distortions are associated with a significant SRO in NbTaTiVZr RHEA. Monte Carlo simulations with both first-principles cluster expansion Hamiltonians and machine-learning interatomic potentials verify the existence of SRO and reveal the underlying origin for the bonding preference trends in NbTaTiVZr. It can be attributed to the large electronegativity difference and moderate atomic-size mismatch between Zr and other atoms.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"57 ","pages":"Article 101796"},"PeriodicalIF":9.7000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S254252932500152X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical short-range order (SRO) has an intriguing relationship with the mechanical properties in solid-solution alloys. Here, we report experimentally observed SRO and atomic-level quantification of lattice distortions in the NbTaTiV and NbTaTiVZr refractory high-entropy alloys (RHEA), using atomic-resolution scanning transmission electron microscopy (STEM) coupled with atomistic simulations. Combination of atomic position and intensity analysis estimate the relationship between atomic bonds and SRO, indicating the bonding preference of Ta-V, Ti-V, Ti-Zr, and Nb-Ta. The non-randomness of interatomic distances and significant deviation in the predicted value of lattice distortions are associated with a significant SRO in NbTaTiVZr RHEA. Monte Carlo simulations with both first-principles cluster expansion Hamiltonians and machine-learning interatomic potentials verify the existence of SRO and reveal the underlying origin for the bonding preference trends in NbTaTiVZr. It can be attributed to the large electronegativity difference and moderate atomic-size mismatch between Zr and other atoms.

Abstract Image

Abstract Image

利用STEM和原子模拟从原子位置偏差观察难熔高熵合金的短程有序
化学短程有序(SRO)与固溶合金的力学性能有着密切的关系。本文采用原子分辨率扫描透射电子显微镜(STEM)与原子模拟相结合的方法,实验观察了NbTaTiV和NbTaTiVZr难熔高熵合金(RHEA)中晶格畸变的SRO和原子水平定量。结合原子位置和强度分析估计原子键与SRO之间的关系,表明Ta-V、Ti-V、Ti-Zr和Nb-Ta的键偏好。原子间距离的非随机性和晶格畸变预测值的显著偏差与NbTaTiVZr RHEA中显著的SRO有关。利用第一性原理簇展开哈密顿量和机器学习原子间势的蒙特卡罗模拟验证了SRO的存在,并揭示了NbTaTiVZr中键偏好趋势的潜在起源。这可以归因于Zr与其他原子之间的电负性差异大,原子尺寸不匹配适中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信