{"title":"Defects Passivation and Performance Enhancement of AlGaN/GaN HEMTs by Supercritical Hydrogen Treatment","authors":"J. K. Lian;Y. Q. Chen;C. Liu;X. Y. Zhang","doi":"10.1109/JEDS.2025.3589195","DOIUrl":null,"url":null,"abstract":"In this paper, supercritical hydrogen treatment is used to passivate the defects of normally-on type AlGaN/GaN high electron mobility transistors. By comparing the electrical characteristics of devices before and after the experiment, the treated devices have shown larger on-state current, a negative shift of threshold voltage and shorter gate-lag. In addition, the reliability of the devices before and after treatment is tested by applying a DC reverse bias stress to the gate and the result indicates that the treated devices show less degradation after RB stress. At the same time, through the low-frequency noise test, it is further verified that the defect density near the 2DEG channel reduced from <inline-formula> <tex-math>$1.25 \\times 10^{20}~ {\\mathrm {cm}}^{-3}{\\mathrm {eV}}^{-1}$ </tex-math></inline-formula> to <inline-formula> <tex-math>$8.94 \\times 10^{18}~ {\\mathrm {cm}}^{-3}{\\mathrm {eV}}^{-1}$ </tex-math></inline-formula>. Based on the above results, a physical model is proposed to demonstrate the passivation mechanism. The original passivation layer and AlGaN barrier layer have many dangling bond defects that can capture electrons and cause virtual gate effect. Supercritical hydrogen penetrates into the material substrate and passivates the dangling bonds. The result of this experiment provides a significant reference for the research of improving the reliability of AlGaN/GaN HEMTs.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"625-629"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11080297","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11080297/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, supercritical hydrogen treatment is used to passivate the defects of normally-on type AlGaN/GaN high electron mobility transistors. By comparing the electrical characteristics of devices before and after the experiment, the treated devices have shown larger on-state current, a negative shift of threshold voltage and shorter gate-lag. In addition, the reliability of the devices before and after treatment is tested by applying a DC reverse bias stress to the gate and the result indicates that the treated devices show less degradation after RB stress. At the same time, through the low-frequency noise test, it is further verified that the defect density near the 2DEG channel reduced from $1.25 \times 10^{20}~ {\mathrm {cm}}^{-3}{\mathrm {eV}}^{-1}$ to $8.94 \times 10^{18}~ {\mathrm {cm}}^{-3}{\mathrm {eV}}^{-1}$ . Based on the above results, a physical model is proposed to demonstrate the passivation mechanism. The original passivation layer and AlGaN barrier layer have many dangling bond defects that can capture electrons and cause virtual gate effect. Supercritical hydrogen penetrates into the material substrate and passivates the dangling bonds. The result of this experiment provides a significant reference for the research of improving the reliability of AlGaN/GaN HEMTs.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.