Jie Xu,Haorui An,Xiangtao Kong,Zixuan Zhang,Qidong Liu,Jie Li,Jie Qin,Ivan A Bratchenko,Shuang Wang
{"title":"Reconstructing Super-Resolution Raman Spectral Image Using a Generative Adversarial Network-Based Algorithm.","authors":"Jie Xu,Haorui An,Xiangtao Kong,Zixuan Zhang,Qidong Liu,Jie Li,Jie Qin,Ivan A Bratchenko,Shuang Wang","doi":"10.1021/acs.analchem.5c02934","DOIUrl":null,"url":null,"abstract":"Raman imaging utilizes molecular fingerprint information to visualize the spatial distribution of a substance within the scanned area. Subject to its scanning mechanism, it usually costs a prolonged data acquisition duration for achieving high-resolution Raman images. In this study, we propose a generative adversarial network (GANs) based algorithm to significantly enhance both the Raman spectral imaging speed and spatial resolution. The proposed method was trained and evaluated on 186 hyperspectral Raman datasets acquired from unlabeled cells, and its reconstruction performance was quantitatively evaluated by the parameters of peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and root-mean-square error (RMSE). Univariate imaging and K-means clustering analysis (KCA) were both adopted to evaluate the preservation of biochemical information after image reconstructing. The results demonstrated that the proposed method effectively enhances spatial resolution by a factor of 2-4 while accelerating imaging speed by a factor of 4-16. Furthermore, transfer learning was utilized to adapt the pretrained model to different objects, validating its generalization capabilities and extending its universalities. This study highlighted the potential of deep learning for super-resolution Raman imaging, providing a promising pathway for high-throughput and real-time biochemical analysis.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"68 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c02934","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Raman imaging utilizes molecular fingerprint information to visualize the spatial distribution of a substance within the scanned area. Subject to its scanning mechanism, it usually costs a prolonged data acquisition duration for achieving high-resolution Raman images. In this study, we propose a generative adversarial network (GANs) based algorithm to significantly enhance both the Raman spectral imaging speed and spatial resolution. The proposed method was trained and evaluated on 186 hyperspectral Raman datasets acquired from unlabeled cells, and its reconstruction performance was quantitatively evaluated by the parameters of peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and root-mean-square error (RMSE). Univariate imaging and K-means clustering analysis (KCA) were both adopted to evaluate the preservation of biochemical information after image reconstructing. The results demonstrated that the proposed method effectively enhances spatial resolution by a factor of 2-4 while accelerating imaging speed by a factor of 4-16. Furthermore, transfer learning was utilized to adapt the pretrained model to different objects, validating its generalization capabilities and extending its universalities. This study highlighted the potential of deep learning for super-resolution Raman imaging, providing a promising pathway for high-throughput and real-time biochemical analysis.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.