Quan Khanh Luu;Dinh Quang Nguyen;Nhan Huu Nguyen;Nam Phuong Dam;Van Anh Ho
{"title":"Vision-Based Proximity and Tactile Sensing for Robot Arms: Design, Perception, and Control","authors":"Quan Khanh Luu;Dinh Quang Nguyen;Nhan Huu Nguyen;Nam Phuong Dam;Van Anh Ho","doi":"10.1109/TRO.2025.3593087","DOIUrl":null,"url":null,"abstract":"Soft-bodied robots with multimodal sensing capabilities hold promise for versatile and user-friendly robotics. However, seamlessly integrating multiple sensing functionalities into soft artificial skins remains a challenge due to compatibility issues between soft materials and conventional electronics. While vision-based tactile sensing has enabled simple and effective sensor designs for robotic touch, there has been limited exploration of this technique for intrinsic multimodal sensing in large-sized soft robot bodies. To address this gap, this article introduces a novel vision-based soft sensing technique, named ProTac, capable of operating either in tactile or proximity sensing modes. This vision-based sensing technology relies on a soft functional skin that can actively switch its optical properties between opaque and transparent states. Furthermore, this article develops efficient learning pipelines for proximity and tactile perceptions, as well as sensing strategies enabled through the timing activation of the two sensing modes. The effectiveness of the soft sensing technology is demonstrated through a soft ProTac link, which can be integrated into newly constructed or existing commercial robot arms. Results suggest that robots integrated with the ProTac link, along with rigorous control formulation can perform safe and purposeful control actions, which enhances human–robot interaction scenarios and facilitates motion control tasks that are challenging to achieve with conventional rigid links.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"5000-5019"},"PeriodicalIF":10.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11097357","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11097357/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Soft-bodied robots with multimodal sensing capabilities hold promise for versatile and user-friendly robotics. However, seamlessly integrating multiple sensing functionalities into soft artificial skins remains a challenge due to compatibility issues between soft materials and conventional electronics. While vision-based tactile sensing has enabled simple and effective sensor designs for robotic touch, there has been limited exploration of this technique for intrinsic multimodal sensing in large-sized soft robot bodies. To address this gap, this article introduces a novel vision-based soft sensing technique, named ProTac, capable of operating either in tactile or proximity sensing modes. This vision-based sensing technology relies on a soft functional skin that can actively switch its optical properties between opaque and transparent states. Furthermore, this article develops efficient learning pipelines for proximity and tactile perceptions, as well as sensing strategies enabled through the timing activation of the two sensing modes. The effectiveness of the soft sensing technology is demonstrated through a soft ProTac link, which can be integrated into newly constructed or existing commercial robot arms. Results suggest that robots integrated with the ProTac link, along with rigorous control formulation can perform safe and purposeful control actions, which enhances human–robot interaction scenarios and facilitates motion control tasks that are challenging to achieve with conventional rigid links.
期刊介绍:
The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles.
Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.