Houlian Zhang , Na Xing , Junmin Wang , Jing Zhang , Cao Jia , Yifei Li , Hualin Fan , Yiying Liu , Fatemeh Dialameh , Nannan Cheng , Yanyan Sun , Junyang Wang , Menglu Wang , Moxin Wu , Xiaoping Yin , Wei Zhu , Jing Li , Jiewen Zhang , Chao Jiang , Fei Xing , Jian Wang
{"title":"Histopathological and ultrastructural changes in different cell types during ischemic and hemorrhagic stroke","authors":"Houlian Zhang , Na Xing , Junmin Wang , Jing Zhang , Cao Jia , Yifei Li , Hualin Fan , Yiying Liu , Fatemeh Dialameh , Nannan Cheng , Yanyan Sun , Junyang Wang , Menglu Wang , Moxin Wu , Xiaoping Yin , Wei Zhu , Jing Li , Jiewen Zhang , Chao Jiang , Fei Xing , Jian Wang","doi":"10.1016/j.arr.2025.102846","DOIUrl":null,"url":null,"abstract":"<div><div>Stroke is a disease of the central nervous system that leads to high rates of morbidity and mortality, along with limited treatment options. This condition is frequently linked to pathologic alterations at the ultrastructural level within diverse neuronal components, including cell bodies, neurites, and synapses, as well as in glial cells like astrocytes, microglia, and oligodendrocytes. These changes include alterations in the shape and size of cell bodies, disruption of neurites, and changes in the density and distribution of synapses. The blood-brain barrier, a crucial component of the brain's defense system, is also compromised following a stroke, leading to further complications. Although stroke research has significantly advanced, there is still a lack of comprehensive reviews on ultrastructural pathological changes. Given the current challenges in treating stroke, identifying dynamic subcellular structural changes can improve our understanding of the complex pathologic processes after a stroke, ultimately enhancing clinical diagnosis and therapeutic strategies. This review aims to summarize and analyze the ultrastructural changes documented through transmission electron microscopy in both ischemic and hemorrhagic stroke, providing insights for future research and developing novel treatments.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"111 ","pages":"Article 102846"},"PeriodicalIF":12.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163725001928","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stroke is a disease of the central nervous system that leads to high rates of morbidity and mortality, along with limited treatment options. This condition is frequently linked to pathologic alterations at the ultrastructural level within diverse neuronal components, including cell bodies, neurites, and synapses, as well as in glial cells like astrocytes, microglia, and oligodendrocytes. These changes include alterations in the shape and size of cell bodies, disruption of neurites, and changes in the density and distribution of synapses. The blood-brain barrier, a crucial component of the brain's defense system, is also compromised following a stroke, leading to further complications. Although stroke research has significantly advanced, there is still a lack of comprehensive reviews on ultrastructural pathological changes. Given the current challenges in treating stroke, identifying dynamic subcellular structural changes can improve our understanding of the complex pathologic processes after a stroke, ultimately enhancing clinical diagnosis and therapeutic strategies. This review aims to summarize and analyze the ultrastructural changes documented through transmission electron microscopy in both ischemic and hemorrhagic stroke, providing insights for future research and developing novel treatments.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.