Jing Zhao, Yuan Zhao, Shuzhe Song, Sai Zhang, Guodong Yang, Yan Qiu, Weishun Tian
{"title":"Gallic Acid Alleviates Acetaminophen-Induced Acute Liver Injury by Regulating Inflammatory and Oxidative Stress Signaling Proteins.","authors":"Jing Zhao, Yuan Zhao, Shuzhe Song, Sai Zhang, Guodong Yang, Yan Qiu, Weishun Tian","doi":"10.3390/antiox14070860","DOIUrl":null,"url":null,"abstract":"<p><p>Acetaminophen (APAP) overdose is a major cause of drug-induced liver injury (DILI) globally, which necessitates effective therapies. Gallic acid (GA), a naturally abundant polyphenol, possesses potent antioxidant and anti-inflammatory properties that may overcome the limitations of N-acetylcysteine (NAC), such as its narrow therapeutic window. This study systematically investigated the hepatoprotective effects and underlying molecular mechanisms of GA against APAP-induced acute liver injury (ALI). Mice received an intraperitoneal injection of APAP (300 mg/kg), followed by an oral administration of GA (50 or 100 mg/kg) or NAC (150 mg/kg) 1 h post-intoxication. Both GA and NAC significantly ameliorated hypertrophy and histopathological damage, as evidenced by reduced serum ALT/AST levels and inflammatory cytokines. TUNEL staining revealed a marked suppression of apoptotic and necrotic cell death, further supported by the downregulation of pro-apoptotic Bax and the upregulation of anti-apoptotic Bcl-2 mRNA expression. GA and NAC treatment restored hepatic glutathione (GSH) content, enhanced antioxidant enzyme gene expression, and reduced malondialdehyde (MDA) accumulation. Mechanistically, GA and NAC inhibited MAPK phosphorylation while activating AMPK signaling. Taken together, these findings demonstrate that GA mitigates APAP-induced ALI by modulating oxidative stress and inflammation through the regulation of MAPK/AMPK signaling proteins.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 7","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12291977/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14070860","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acetaminophen (APAP) overdose is a major cause of drug-induced liver injury (DILI) globally, which necessitates effective therapies. Gallic acid (GA), a naturally abundant polyphenol, possesses potent antioxidant and anti-inflammatory properties that may overcome the limitations of N-acetylcysteine (NAC), such as its narrow therapeutic window. This study systematically investigated the hepatoprotective effects and underlying molecular mechanisms of GA against APAP-induced acute liver injury (ALI). Mice received an intraperitoneal injection of APAP (300 mg/kg), followed by an oral administration of GA (50 or 100 mg/kg) or NAC (150 mg/kg) 1 h post-intoxication. Both GA and NAC significantly ameliorated hypertrophy and histopathological damage, as evidenced by reduced serum ALT/AST levels and inflammatory cytokines. TUNEL staining revealed a marked suppression of apoptotic and necrotic cell death, further supported by the downregulation of pro-apoptotic Bax and the upregulation of anti-apoptotic Bcl-2 mRNA expression. GA and NAC treatment restored hepatic glutathione (GSH) content, enhanced antioxidant enzyme gene expression, and reduced malondialdehyde (MDA) accumulation. Mechanistically, GA and NAC inhibited MAPK phosphorylation while activating AMPK signaling. Taken together, these findings demonstrate that GA mitigates APAP-induced ALI by modulating oxidative stress and inflammation through the regulation of MAPK/AMPK signaling proteins.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.