Neng-Da Li;Yueh-Chin Lin;Kai-Wen Chen;Heng-Tung Hsu;Yi-Fan Tsao;Edward Yi Chang
{"title":"Novel Gate Fabrication Process Enhancing High-Frequency Operation in AlGaN/GaN HEMTs for Ka-Band Applications","authors":"Neng-Da Li;Yueh-Chin Lin;Kai-Wen Chen;Heng-Tung Hsu;Yi-Fan Tsao;Edward Yi Chang","doi":"10.1109/JEDS.2025.3584809","DOIUrl":null,"url":null,"abstract":"In this study, AlGaN/GaN high-electron-mobility-transistor (HEMTs) with a small gate length were fabricated using a stepper. Additionally, a novel gate fabrication process was conducted to shrink the gate head, thus reducing the parasitic capacitance of the device to achieve high-power amplifier performance. The device performance in the research demonstrated a steady-state current density (Idss) of 975 mA/mm and a maximum transconductance (gm) of 369 mS/mm at a 20 V bias. Moreover, the cut-off frequency (fT) reached 50.6 GHz, and the maximum oscillation frequency (fmax) achieved 161 GHz as measured by S-parameter measurement. In the load-pull system, the frequency operation is under 28 GHz. For the <inline-formula> <tex-math>$2\\times 50~\\mu $ </tex-math></inline-formula>m device at a drain bias of 20 V, it exhibits a maximum output power density (Pout) of 2.83 W/mm with a maximum 24.97% power-added efficiency (PAE). Additionally, for the <inline-formula> <tex-math>$8\\times 50~\\mu $ </tex-math></inline-formula>m device at a drain bias of 32V, it achieves a <inline-formula> <tex-math>$\\mathrm { P_{out}}$ </tex-math></inline-formula> of 1.27 W (3.18 W/mm). This work demonstrates that the novel gate fabrication process of shrinking gate head by using <inline-formula> <tex-math>$\\mathrm { SiN_{x}}$ </tex-math></inline-formula> shield achieves high-frequency and high-output power characteristics for Ka-band application.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"593-598"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11062583","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11062583/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, AlGaN/GaN high-electron-mobility-transistor (HEMTs) with a small gate length were fabricated using a stepper. Additionally, a novel gate fabrication process was conducted to shrink the gate head, thus reducing the parasitic capacitance of the device to achieve high-power amplifier performance. The device performance in the research demonstrated a steady-state current density (Idss) of 975 mA/mm and a maximum transconductance (gm) of 369 mS/mm at a 20 V bias. Moreover, the cut-off frequency (fT) reached 50.6 GHz, and the maximum oscillation frequency (fmax) achieved 161 GHz as measured by S-parameter measurement. In the load-pull system, the frequency operation is under 28 GHz. For the $2\times 50~\mu $ m device at a drain bias of 20 V, it exhibits a maximum output power density (Pout) of 2.83 W/mm with a maximum 24.97% power-added efficiency (PAE). Additionally, for the $8\times 50~\mu $ m device at a drain bias of 32V, it achieves a $\mathrm { P_{out}}$ of 1.27 W (3.18 W/mm). This work demonstrates that the novel gate fabrication process of shrinking gate head by using $\mathrm { SiN_{x}}$ shield achieves high-frequency and high-output power characteristics for Ka-band application.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.