{"title":"Toward robust structure function-based thermal analysis: Quantitative metrics for semiconductor packaging evaluation","authors":"Wonbin Song , Guesuk Lee , Byeng D. Youn","doi":"10.1016/j.microrel.2025.115867","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal management remains a critical challenge in modern semiconductor packaging, where escalating power densities and advanced 2.5D/3D integrated architectures drive the need for accurate and reliable thermal analysis. Structure function (SF)-based thermal analysis provides valuable insights into internal heat transport mechanisms through transient temperature responses. However, its broader adoption is hindered by limitations in data quality, comparison methodologies, and the interpretability of multilayered structures. This study established a robust framework to improve the precision and utility of SF analysis in semiconductor applications. Optimal transient measurement conditions, such as initial time windows (10<sup>−6</sup>–10<sup>−5</sup> s) and sampling density (≥10 points/decade), were identified to enhance the SF accuracy without excessive computational cost. The influence of the thermal and geometric properties was systematically evaluated, highlighting how the layer contrasts and structural voids impact the SF resolution. To overcome the limitations of existing comparison metrics, two new quantitative approaches— the Area Metric and Dynamic Time Warping Metric—are proposed, demonstrating superior sensitivity to both global and localized thermal structure changes. These findings offer practical guidance for thermal design optimization, enable defect detection, and support the development of standardized, simulation-driven SF methodologies.</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"173 ","pages":"Article 115867"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002627142500280X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal management remains a critical challenge in modern semiconductor packaging, where escalating power densities and advanced 2.5D/3D integrated architectures drive the need for accurate and reliable thermal analysis. Structure function (SF)-based thermal analysis provides valuable insights into internal heat transport mechanisms through transient temperature responses. However, its broader adoption is hindered by limitations in data quality, comparison methodologies, and the interpretability of multilayered structures. This study established a robust framework to improve the precision and utility of SF analysis in semiconductor applications. Optimal transient measurement conditions, such as initial time windows (10−6–10−5 s) and sampling density (≥10 points/decade), were identified to enhance the SF accuracy without excessive computational cost. The influence of the thermal and geometric properties was systematically evaluated, highlighting how the layer contrasts and structural voids impact the SF resolution. To overcome the limitations of existing comparison metrics, two new quantitative approaches— the Area Metric and Dynamic Time Warping Metric—are proposed, demonstrating superior sensitivity to both global and localized thermal structure changes. These findings offer practical guidance for thermal design optimization, enable defect detection, and support the development of standardized, simulation-driven SF methodologies.
期刊介绍:
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.
Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.