Corynebacterium glutamicum for Microbial Production of Chitin Oligosaccharides Using Modular Engineering

IF 2.3
Chen Deng, Ruijie Xin, Xingjian Li, Liqiang Fan, Yongjun Qiu, Liming Zhao
{"title":"Corynebacterium glutamicum for Microbial Production of Chitin Oligosaccharides Using Modular Engineering","authors":"Chen Deng,&nbsp;Ruijie Xin,&nbsp;Xingjian Li,&nbsp;Liqiang Fan,&nbsp;Yongjun Qiu,&nbsp;Liming Zhao","doi":"10.1002/fbe2.70012","DOIUrl":null,"url":null,"abstract":"<p>Microbial fermentation is a potent strategy for eco-friendly and sustainable chitin oligosaccharide (CHOS) production. Nonetheless, hurdles (e.g., imbalanced metabolic flow and the need for uridine diphosphate (UDP)-sugar donor consumption in CHOS synthesis) hinder enhanced and efficient production. In this study, we aimed to use <i>Corynebacterium glutamicum</i> as the foundational organism for <i>de novo</i> CHOS synthesis. Initially, we developed the CHOS synthesis pathway in <i>C. glutamicum</i>, attaining a CHOS titer of 113.34 mg/L. Furthermore, we fortified the uridine 5′-diphospho-<i>N</i>-acetylglucosamine (UDP-GlcNAc) synthesis module, vital for CHOS and other functional sugar synthesis, and developed a system for regenerating uridine triphosphate (UTP) precursors. Finally, we performed <i>C. glutamicum</i>-mediated scale-up CHOS production in a 5-L bioreactor yielding a titer of 5.08 g/L. The CHOS chassis strain provides a robust foundation for mass CHOS production via metabolic engineering. Altering the intracellular UDP-sugar donor creation pathway could reportedly significantly enhance CHOS production. We attained the peak concentration of 829.33 mg/L with the heightened expression of <i>glmM</i>, <i>glmU</i>, and the metabolic equilibrium of <i>PCM1</i> and <i>AmgK</i>. Bacterial growth remained unaffected by the excessive gene expressions or external gene incorporations. In addition, the swift growth and <i>C. glutamicum</i> accumulation in the fermenter led to increased CHOS production, reaching a titer of 5.08 g/L from the recombinant strain CGSL63, being 4.43 times higher than in the case of shake flask fermentation. The engineering strategies used in this study might be helpful for the <i>C. glutamicum</i>-mediated microbial synthesis of functional sugars. The methods applied in this study are broadly applicable for boosting the microbial generation of other valuable functional sugars.</p>","PeriodicalId":100544,"journal":{"name":"Food Bioengineering","volume":"4 2","pages":"127-141"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fbe2.70012","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fbe2.70012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial fermentation is a potent strategy for eco-friendly and sustainable chitin oligosaccharide (CHOS) production. Nonetheless, hurdles (e.g., imbalanced metabolic flow and the need for uridine diphosphate (UDP)-sugar donor consumption in CHOS synthesis) hinder enhanced and efficient production. In this study, we aimed to use Corynebacterium glutamicum as the foundational organism for de novo CHOS synthesis. Initially, we developed the CHOS synthesis pathway in C. glutamicum, attaining a CHOS titer of 113.34 mg/L. Furthermore, we fortified the uridine 5′-diphospho-N-acetylglucosamine (UDP-GlcNAc) synthesis module, vital for CHOS and other functional sugar synthesis, and developed a system for regenerating uridine triphosphate (UTP) precursors. Finally, we performed C. glutamicum-mediated scale-up CHOS production in a 5-L bioreactor yielding a titer of 5.08 g/L. The CHOS chassis strain provides a robust foundation for mass CHOS production via metabolic engineering. Altering the intracellular UDP-sugar donor creation pathway could reportedly significantly enhance CHOS production. We attained the peak concentration of 829.33 mg/L with the heightened expression of glmM, glmU, and the metabolic equilibrium of PCM1 and AmgK. Bacterial growth remained unaffected by the excessive gene expressions or external gene incorporations. In addition, the swift growth and C. glutamicum accumulation in the fermenter led to increased CHOS production, reaching a titer of 5.08 g/L from the recombinant strain CGSL63, being 4.43 times higher than in the case of shake flask fermentation. The engineering strategies used in this study might be helpful for the C. glutamicum-mediated microbial synthesis of functional sugars. The methods applied in this study are broadly applicable for boosting the microbial generation of other valuable functional sugars.

Abstract Image

利用模块化工程技术生产几丁质低聚糖的谷氨酸棒状杆菌
微生物发酵是生态友好、可持续生产几丁质低聚糖(CHOS)的有效途径。然而,障碍(例如,代谢流量不平衡和在CHOS合成中需要尿苷二磷酸(UDP)-糖供体消耗)阻碍了增强和有效的生产。在这项研究中,我们旨在利用谷氨酸棒状杆菌作为从头合成CHOS的基础生物。初步建立了谷氨酸丙氨酸(C. glutamum)的CHOS合成途径,获得了CHOS滴度为113.34 mg/L。此外,我们还加强了对CHOS和其他功能糖合成至关重要的尿苷5 ' -二磷酸- n -乙酰氨基葡萄糖(UDP-GlcNAc)合成模块,并开发了一个再生尿苷三磷酸(UTP)前体的系统。最后,我们在一个5-L的生物反应器中进行了谷氨酰胺介导的CHOS放大生产,滴度为5.08 g/L。CHOS底盘应变通过代谢工程为大规模生产CHOS提供了坚实的基础。据报道,改变细胞内udp -糖供体生成途径可以显著提高CHOS的产生。glmM、glmU的表达升高,PCM1和AmgK的代谢平衡得到改善,浓度达到829.33 mg/L。细菌的生长不受过多基因表达或外部基因掺入的影响。此外,重组菌株CGSL63的快速生长和谷氨酰胺在发酵罐内的积累导致了CHOS产量的增加,其滴度达到5.08 g/L,是摇瓶发酵的4.43倍。本研究采用的工程策略可能对谷氨酰胺介导的微生物合成功能糖有帮助。本研究中应用的方法广泛适用于促进微生物产生其他有价值的功能糖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信