Gavin Nop, Micah Mundy, Jonathan D. H. Smith, Durga Paudyal
{"title":"Faithful novel machine learning for predicting quantum properties","authors":"Gavin Nop, Micah Mundy, Jonathan D. H. Smith, Durga Paudyal","doi":"10.1038/s41524-025-01655-w","DOIUrl":null,"url":null,"abstract":"<p>Machine learning (ML) has accelerated the process of materials classification, particularly with crystal graph neural network (CGNN) architectures. However, advanced deep networks have hitherto proved challenging to build and train for quantum materials classification and property prediction. We show that <i>faithful representations</i>, which directly represent crystal structure and symmetry, both refine current ML and effectively implement advanced deep networks to accurately predict these materials and optimize their properties. Our new models reveal the previously hidden power of novel convolutional and pure attentional approaches to represent atomic connectivity and achieve strong performance in predicting topological properties, magnetic properties, and formation energies. With faithful representations, the state-of-the-art CGNN accurately predicts quantum chemistry materials and properties, accelerating the design and discovery and improving the implicit understanding of complex crystal structures and symmetries. On two separate benchmarks, our non-graphical neural networks achieve near parity with the CGNN architecture, making them viable alternatives.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"10 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01655-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML) has accelerated the process of materials classification, particularly with crystal graph neural network (CGNN) architectures. However, advanced deep networks have hitherto proved challenging to build and train for quantum materials classification and property prediction. We show that faithful representations, which directly represent crystal structure and symmetry, both refine current ML and effectively implement advanced deep networks to accurately predict these materials and optimize their properties. Our new models reveal the previously hidden power of novel convolutional and pure attentional approaches to represent atomic connectivity and achieve strong performance in predicting topological properties, magnetic properties, and formation energies. With faithful representations, the state-of-the-art CGNN accurately predicts quantum chemistry materials and properties, accelerating the design and discovery and improving the implicit understanding of complex crystal structures and symmetries. On two separate benchmarks, our non-graphical neural networks achieve near parity with the CGNN architecture, making them viable alternatives.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.