{"title":"A Performance-Enhanced p-Channel GaN MESFET With Tungsten Gate and High ION/ IOFF Ratio on SiC Substrate Operational at 525 K","authors":"Huake Su;Tao Zhang;Shengrui Xu;Yachao Zhang;Hongchang Tao;He Yang;Jingyu Jia;Yue Hao;Jincheng Zhang","doi":"10.1109/TED.2025.3584327","DOIUrl":null,"url":null,"abstract":"In this letter, a normally-off p-channel GaN metal–semiconductor field-effect transistor (MESFET) on SiC substrate with high <inline-formula> <tex-math>${I}_{\\text {ON}}$ </tex-math></inline-formula>/<inline-formula> <tex-math>${I}_{\\text {OFF}}$ </tex-math></inline-formula> ratio and barrier-freed ohmic contact was first demonstrated. Compared to the polarization-enhanced p-GaN/AlN/AlGaN on Si substrate, the same designed epitaxial wafer on SiC substrate showed a decreased surface potential from 11 to −368 mV as well as 1.9 times lower contact resistance (<inline-formula> <tex-math>${R}_{C}\\text {)}$ </tex-math></inline-formula>, modulated by dislocation-related potential. Meanwhile, high <inline-formula> <tex-math>${I}_{\\text {ON}}$ </tex-math></inline-formula>/<inline-formula> <tex-math>${I}_{\\text {OFF}}$ </tex-math></inline-formula> ratio of <inline-formula> <tex-math>$3.3\\times 10^{{7}}$ </tex-math></inline-formula>, ultralow hysteresis voltage of 0.05 V, and subthreshold swing (SS) of 83 mV/dec were obtained. The well-behaved characteristics of p-channel GaN MESFET on SiC substrate with negligible turn-on voltage and high <inline-formula> <tex-math>${I}_{\\text {ON}}$ </tex-math></inline-formula>/<inline-formula> <tex-math>${I}_{\\text {OFF}}$ </tex-math></inline-formula> ratio show great potential for low-voltage complementary metal–oxide–semiconductor (CMOS) applications.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 8","pages":"4558-4562"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11078153/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this letter, a normally-off p-channel GaN metal–semiconductor field-effect transistor (MESFET) on SiC substrate with high ${I}_{\text {ON}}$ /${I}_{\text {OFF}}$ ratio and barrier-freed ohmic contact was first demonstrated. Compared to the polarization-enhanced p-GaN/AlN/AlGaN on Si substrate, the same designed epitaxial wafer on SiC substrate showed a decreased surface potential from 11 to −368 mV as well as 1.9 times lower contact resistance (${R}_{C}\text {)}$ , modulated by dislocation-related potential. Meanwhile, high ${I}_{\text {ON}}$ /${I}_{\text {OFF}}$ ratio of $3.3\times 10^{{7}}$ , ultralow hysteresis voltage of 0.05 V, and subthreshold swing (SS) of 83 mV/dec were obtained. The well-behaved characteristics of p-channel GaN MESFET on SiC substrate with negligible turn-on voltage and high ${I}_{\text {ON}}$ /${I}_{\text {OFF}}$ ratio show great potential for low-voltage complementary metal–oxide–semiconductor (CMOS) applications.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.