Yuzhen Zhang;Qiuxiao Feng;Wangran Wu;Runxiao Shi;Weifeng Sun;Man Wong
{"title":"Effects of Passivation Layers on the Characteristics and Stability of Indium–Gallium–Zinc Oxide Thin-Film Transistors","authors":"Yuzhen Zhang;Qiuxiao Feng;Wangran Wu;Runxiao Shi;Weifeng Sun;Man Wong","doi":"10.1109/TED.2025.3582235","DOIUrl":null,"url":null,"abstract":"The characteristics and stability of bottom-gate (BG), indium–gallium–zinc oxide (IGZO) thin-film transistors (TFTs) with different types of silicon oxide (SiOx) passivation (PV) layers have been investigated. Labeled as S-SiOx or T-SiOx, the PV layers are formed in a plasma-enhanced chemical vapor deposition system using as precursor pairs either silane and nitrous oxide or tetraethyl orthosilicate (TEOS) and oxygen. For a TFT subjected to a subsequent oxidizing heat treatment, a higher proportion of T-SiOx in the PV layer leads to more resistive source/drain (S/D) regions, induces a more extensive pushing of the S/D junctions into the S/D regions, mitigates effective short-channel effects, and improves the stability of the TFT against thermal, and positive and negative gate-bias temperature stress. These changes correlate well with a lower hydrogen content in T-SiOx than in S-SiOx.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 8","pages":"4150-4155"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11078144/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The characteristics and stability of bottom-gate (BG), indium–gallium–zinc oxide (IGZO) thin-film transistors (TFTs) with different types of silicon oxide (SiOx) passivation (PV) layers have been investigated. Labeled as S-SiOx or T-SiOx, the PV layers are formed in a plasma-enhanced chemical vapor deposition system using as precursor pairs either silane and nitrous oxide or tetraethyl orthosilicate (TEOS) and oxygen. For a TFT subjected to a subsequent oxidizing heat treatment, a higher proportion of T-SiOx in the PV layer leads to more resistive source/drain (S/D) regions, induces a more extensive pushing of the S/D junctions into the S/D regions, mitigates effective short-channel effects, and improves the stability of the TFT against thermal, and positive and negative gate-bias temperature stress. These changes correlate well with a lower hydrogen content in T-SiOx than in S-SiOx.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.