Jundan Tang, Zhifang Liu, Lihua Shen, Wei Fu and Xian Li
{"title":"Emerging sulfur quantum dots: from synthesis strategies to optical property engineering towards multidisciplinary applications","authors":"Jundan Tang, Zhifang Liu, Lihua Shen, Wei Fu and Xian Li","doi":"10.1039/D5TC01533B","DOIUrl":null,"url":null,"abstract":"<p >Sulfur quantum dots (SQDs), a novel class of semiconductor nanomaterials, have garnered increasing attention due to their exceptional luminescent properties, robust biocompatibility, low toxicity antibacterial activity, and facile functionalization. Despite the many advantages of SQDs, a systematic and comprehensive review, especially regarding their future development directions and challenges, is still lacking. This gap hampers a cohesive understanding of the field and limits the ability to harness their full potential. In this review, we present a detailed examination of the synthesis strategies employed for SQDs, alongside an in-depth discussion on the modulation of their optical properties and their diverse applications across fields such as biomedicine, catalysis, and optoelectronics. Furthermore, we highlight critical challenges and future directions in the preparation and practical deployment of SQDs, offering insights into overcoming current limitations. By providing a holistic perspective, this review aims to serve as a valuable resource for advancing SQDs research and unlocking their transformative potential in emerging technologies.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 29","pages":" 14697-14710"},"PeriodicalIF":5.1000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc01533b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfur quantum dots (SQDs), a novel class of semiconductor nanomaterials, have garnered increasing attention due to their exceptional luminescent properties, robust biocompatibility, low toxicity antibacterial activity, and facile functionalization. Despite the many advantages of SQDs, a systematic and comprehensive review, especially regarding their future development directions and challenges, is still lacking. This gap hampers a cohesive understanding of the field and limits the ability to harness their full potential. In this review, we present a detailed examination of the synthesis strategies employed for SQDs, alongside an in-depth discussion on the modulation of their optical properties and their diverse applications across fields such as biomedicine, catalysis, and optoelectronics. Furthermore, we highlight critical challenges and future directions in the preparation and practical deployment of SQDs, offering insights into overcoming current limitations. By providing a holistic perspective, this review aims to serve as a valuable resource for advancing SQDs research and unlocking their transformative potential in emerging technologies.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors