{"title":"Open Type Solid Photoacoustic Trace Gas Sensor with Multi-Pass Absorption Enhancement.","authors":"Junlin Zhang,Lixian Liu,Jialiang Sun,Xueshi Zhang,Baisong Chen,Yize Liang,Binxing Zhao,Huiting Huan,Xuesen Xu,Huailiang Xu,Andreas Mandelis","doi":"10.1021/acs.analchem.5c03412","DOIUrl":null,"url":null,"abstract":"A wavelength modulation solid photoacoustic spectroscopic (WM-SPAS) sensor enhanced with an open-type multi-pass cell (OMPC) is reported for highly sensitive detection of trace gases, especially suitable for highly corrosive and long optical-to-thermal (non-radiative) relaxation gaseous species. Such open configuration is quite different from traditional trace gas detection methods in that the separation design of the acoustic signal detector and gas absorption cavity avoids the adversely corrosive effect and reduces signal fluctuations caused by high flow rates. The modulated beam after the optical absorption by the target gas in the designed open-type multi-pass path is directed into a self-designed solid chamber, filled with carbon powder while the photoacoustic (PA) pressure signal is analyzed to yield the target gas concentration. By optimizing the incident beam angle, the OMPC achieves 96 reflections, yielding a 9.6 m optical path length enhancement. Using acetylene (C2H2) as a test sample and a DFB laser as the excitation source, this WM-SPAS sensor achieves sensitivity of 80 ppb and corresponding normalized noise equivalent absorption coefficient equal to 2.42 × 10-9 cm-1 W/Hz-1/2 with 1 s time constant and modulation frequency as low as 39 Hz, which enables the sensor to detect gases with slow non-radiative relaxation. An Allan deviation analysis indicated the minimum detection limit could be further improved to 7 ppb at 100 s integration time. The response deviation of the PA signal under different flow rates was characterized by a coefficient of variation of 0.71‰. With its separate structure design, this newly developed PAS trace gas sensor offers unique advantages for open trace gas detection in high-flow and corrosive environments.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"17 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c03412","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A wavelength modulation solid photoacoustic spectroscopic (WM-SPAS) sensor enhanced with an open-type multi-pass cell (OMPC) is reported for highly sensitive detection of trace gases, especially suitable for highly corrosive and long optical-to-thermal (non-radiative) relaxation gaseous species. Such open configuration is quite different from traditional trace gas detection methods in that the separation design of the acoustic signal detector and gas absorption cavity avoids the adversely corrosive effect and reduces signal fluctuations caused by high flow rates. The modulated beam after the optical absorption by the target gas in the designed open-type multi-pass path is directed into a self-designed solid chamber, filled with carbon powder while the photoacoustic (PA) pressure signal is analyzed to yield the target gas concentration. By optimizing the incident beam angle, the OMPC achieves 96 reflections, yielding a 9.6 m optical path length enhancement. Using acetylene (C2H2) as a test sample and a DFB laser as the excitation source, this WM-SPAS sensor achieves sensitivity of 80 ppb and corresponding normalized noise equivalent absorption coefficient equal to 2.42 × 10-9 cm-1 W/Hz-1/2 with 1 s time constant and modulation frequency as low as 39 Hz, which enables the sensor to detect gases with slow non-radiative relaxation. An Allan deviation analysis indicated the minimum detection limit could be further improved to 7 ppb at 100 s integration time. The response deviation of the PA signal under different flow rates was characterized by a coefficient of variation of 0.71‰. With its separate structure design, this newly developed PAS trace gas sensor offers unique advantages for open trace gas detection in high-flow and corrosive environments.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.